MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Free Electron Theory of a Metal

Readings: Hill, pp. 441-444

We know how to think about the electronic structure of a molecule - we know the orbitals, their energies, their occupancies - but with a metal, which we treat as one giant molecule of N atoms, how do we handle the large number of orbitals and electrons? Need to invent new ideas like the density of electronic states which is \# of states/unit quantum number or \# of states/unit energy.

FREE ELECTRON MODEL

Many metals ($\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Li}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}$) have one unpaired s electron per atom that acts "free." The interaction with the ion core and other electrons is sufficiently weak to justify building a model in which these interactions are ignored. The potential energy is zero everywhere except ∞ potential at the ends of the box.

Equation of motion for particle in a box

$$
-\frac{\hbar^{2}}{2 \mathrm{~m}}\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right) \psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{E} \psi(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

Solutions for cubic box of length L

$$
\begin{gathered}
\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{8}{\mathrm{~L}^{3}}\right)^{1 / 2} \sin \left(\frac{\mathrm{n}_{\mathrm{x}} \pi \mathrm{x}}{\mathrm{~L}}\right) \sin \left(\frac{\mathrm{n}_{\mathrm{x}} \pi \mathrm{y}}{\mathrm{~L}}\right) \sin \left(\frac{\mathrm{n}_{\mathrm{x}} \pi \mathrm{z}}{\mathrm{~L}}\right) \\
\mathrm{E}=\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\pi^{2}}{\mathrm{~L}^{2}}\left(\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}^{2}+\mathrm{n}_{\mathrm{z}}^{2}\right)
\end{gathered}
$$

Define wavevectors in terms of quantum \#'s (because, in the solid state, wavevectors are more convenient for counting states than quantum numbers).

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{x}}=\frac{\pi}{\mathrm{L}} \mathrm{n}_{\mathrm{x}} \quad \mathrm{k}_{\mathrm{y}}=\frac{\pi}{\mathrm{L}} \mathrm{n}_{\mathrm{y}} \quad \mathrm{k}_{\mathrm{z}}=\frac{\pi}{\mathrm{L}} \mathrm{n}_{\mathrm{z}} \\
& \mathrm{k}^{2}=\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2} \\
& \mathrm{E}
\end{aligned}
$$

Now, a is the lattice constant

$$
\mathrm{E}=\frac{\hbar^{2}}{2 \mathrm{ma}^{2}}(\mathrm{ka})^{2}
$$

and

$$
(\mathrm{ka})^{2}=\mathrm{n}_{\mathrm{x}}^{2} \pi^{2}\left(\frac{\mathrm{a}}{\mathrm{~L}}\right)^{2}+\mathrm{n}_{\mathrm{y}}^{2} \pi^{2}\left(\frac{\mathrm{a}}{\mathrm{~L}}\right)^{2}+\mathrm{n}_{\mathrm{z}}^{2} \pi^{2}\left(\frac{\mathrm{a}}{\mathrm{~L}}\right)^{2}
$$

Now, it is easy to see that because $a / L \ll 1$, ka can be treated as a quasi-continuous variable, thus the allowed values of E also vary continuously.

Large degeneracy - all states with same value of $(\mathrm{ka})^{2}$ or same value of $n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$ will have the same energy. For small values of n_{x}, n_{y}, n_{z}, it is possible to enumerate the degeneracy, but not so for large values - and we will need large values because $\mathrm{e}^{-1} \mathrm{~s}$ are fermions and each state may be occupied by at most one fermion. So the answer is to calculate the density of states.

DENSITY OF STATES (\# of states per unit wavevector)

Surface area of sphere with radius k is $4 \pi \mathrm{k}^{2}$
Each state on the surface has same value of k or E
Spherical shell of radius k and thickness $d k$ has volume $4 \pi \mathrm{k}^{2} \mathrm{dk}$
How many different wavevector states are there in this volume?
$(\pi / \mathrm{L})^{3}=$ volume of one state because each k_{i} has length π / L. [Where does this k -space volume come from? There must be N half wavelengths per L in order to satisfy boundary conditions: $\mathrm{L}=\mathrm{N}(\lambda / 2)$. But $\mathrm{k}_{\mathrm{N}}=2 \pi / \lambda_{\mathrm{N}}$. Thus $\mathrm{k}_{\mathrm{N}}=\mathrm{N}(\pi / \mathrm{L})$. k changes in steps of π / L, thus the k -space volume associated with each allowed value of $\mathrm{k}_{\mathrm{L}, \mathrm{M}, \mathrm{N}}$ is $(\pi / \mathrm{L})^{3}$.]

Number of states with range of k between k and $\mathrm{k}+\mathrm{dk}$ is
$\mathrm{dN}=\frac{4 \pi \mathrm{k}^{2} \mathrm{dk}}{8(\pi / \mathrm{L})^{3}}=\frac{\mathrm{L}^{3}}{2 \pi^{2}} \mathrm{k}^{2} \mathrm{dk}$
divide by 8 to include only the positive octant of spherical shell because $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}$, and k_{z} must all be positive.

DENSITY OF STATES (\# of states per unit energy)
replace k^{2} and dk in above equation for dN :

$$
\begin{aligned}
\mathrm{E} & =\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}} \Rightarrow \mathrm{k}=\left(\frac{2 \mathrm{mE}}{\hbar^{2}}\right)^{1 / 2} \\
\frac{\mathrm{dk}}{\mathrm{dE}} & =\frac{1}{2}\left(\frac{2 \mathrm{~m}}{\hbar^{2}}\right)^{1 / 2} \mathrm{E}^{-1 / 2} \Rightarrow \mathrm{dk}=\frac{1}{2}\left(\frac{2 \mathrm{~m}}{\hbar^{2}}\right)^{1 / 2} \mathrm{E}^{-1 / 2} \mathrm{dE} \\
\mathrm{dN} & =\frac{\mathrm{L}^{3}}{2 \pi^{2}} \mathrm{k}^{2} \mathrm{dk}=\frac{\mathrm{L}^{3}}{2 \pi^{2}}\left(\frac{2 \mathrm{mE}}{\hbar^{2}}\right) \frac{1}{2}\left(\frac{2 \mathrm{~m}}{\hbar^{2}}\right)^{1 / 2} \mathrm{E}^{-1 / 2} \mathrm{dE} \\
\mathrm{~V} & =\mathrm{L}^{3} \\
\mathrm{dN} & =\frac{\mathrm{V}}{4 \pi^{2}}\left(\frac{2 \mathrm{~m}}{\hbar^{2}}\right)^{3 / 2} \mathrm{E}^{1 / 2} \mathrm{dE}
\end{aligned}
$$

This is the number of states with E in the range between E and $\mathrm{E}+\mathrm{dE}$.

