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THERMODYNAMICS OF SOLIDS: EINSTEIN AND DEBYE


MODELS


Reading: Hill, pages 86-98 

For the next few lectures we will discuss solids, in particular crystalline solids, in
which the particles are arranged in a regular lattice. 

•	 The lattice could consist of single atoms or atomic ions, such as Ar or Na+Cl– 

arranged in something like a face-centered-cubic (FCC) or body-centered-cubic 
(BCC) crystalline array. 

•	 Or the lattice could be a crystal of more complex molecules in a lattice, such as
CO, CO2, H2O, penicillin, hemoglobin, etc. 

TOTAL # DEGREES OF FREEDOM = 3N (where N = # of atoms in the crystal) 

3 correspond to overall translation

3 correspond to overall rotation

!
"
#

 of whole crystal

remaining 3N–6 correspond to internal vibrations within crystal 

In this treatment the crystal is viewed as a giant polyatomic molecule undergoing 
simple harmonic motion in each of its 3N-6 vibrational normal modes. 

The behavior of such a harmonic molecular crystal is described by the normal 
modes of vibration. There are 3N–6 harmonic oscillators that can be treated 
independently (a convenient idealization) to describe the motions and energies within the
crystal. 

There are many kinds of vibrations in a crystal. Viewed along a particular
direction, there will be periodic distortions of alternating extension and compression, 
analogous to the stretching modes of a linear molecule. There will also be alternating
displacements of atoms above and below the specified direction, analogous to the
bending modes of a linear molecule. These longitudinal and transverse modes of a 
crystal can have wavelengths ranging from as short as a bond length (high frequency) and
as long as the macroscopic crystal itself (low frequency). The distribution of frequencies,
directions (relative to unit cell axes), and types of vibrations can be very complicated.
The simplest models for crystalline solids are based on assumptions about the crystal

Qvib

*vibrations that simplify 
Qvib

*

calculation of and the derivation of thermodynamic 
properties from . These models also permit inferences about the nature of the
vibrations in a crystal based on the small number (much smaller than 3N–6) of possible 
experimental observations of the macroscopic properties in the crystal. 
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The normal modes for a violin string correspond to one-dimensional particle-in-a-box 
solutions: 

From Lectures 14 and 15 we recall that for a single harmonic oscillator (and excluding
the zero-point energy) 
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and for a set of independent (i.e. uncoupled), harmonic oscillators 
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Einstein Function

NB: This derivation treated all oscillators as harmonic and uncoupled. 

Heat Capacity 
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Free Energy (Helmholtz) 
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Entropy 
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So, we should be able to calculate “all” properties of solids, but it seems as though we
need to know the frequencies of all of the normal modes. 

Classical Treatment — Equipartition Principle 

Put 
1
2 kT of energy into each “degree of energy storage”, where each normal

mode of vibration has TWO degrees for storage of energy (one for kinetic energy 
and the second for potential energy). 
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This is correct at HIGH TEMPERATURE, and is known as the LAW OF
DULONG AND PETIT (~1819) 

• Heat capacity per mole is roughly the same for all substances 

• Measure heat capacity per gram (different for all substances) 

• The ratio is grams/mole = molecular mass! 

The Classical Treatment, however, turns out to be incorrect at low temperature. 
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Einstein Treatment 

Use quantum theory (as opposed to classical) 

This makes it easy to evaluate the sum over
vibrations. 

Assume all ν i equal (all xi equal) 
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This approach provides a significant improvement over the classical (equipartition)
result, because CV → 0 for T → 0. 
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The success of the Einstein model gave important early support to quantum theory: it
showed that quantization of vibrational energy could account for low-T heat capacity. 
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