MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.62 Physical Chemistry II Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

<u>5.62 Lecture #20</u>: Virial Equation of State

Goal: Derive Virial Eqn. of State

$$p = -\left(\frac{\partial A}{\partial V}\right)_{N,T} = kT \left(\frac{\partial \ln Q}{\partial V}\right)_{N,T}$$
pressure

$$Q = \frac{(2\pi mkT)^{3N/2}}{N!h^{3N}} Z(N,V,T) = \frac{(2\pi mkT)^{3N/2}}{N!h^{3N}} V^N \exp\left[\frac{N\beta}{2}\left(\frac{N}{V}\right)\right]$$
$$\ln Q = \ln\left[\frac{(2\pi mkT)^{3N/2}}{N!h^{3N}}\right] + N\ln V + \frac{N\beta}{2}\left(\frac{N}{V}\right)$$

Plugging ln Q into equation for p ...

$$p = kT \left[\frac{\partial (\text{constants})}{\partial V} + \frac{N\partial \ln V}{\partial V} + \frac{\partial (N^2\beta/2V)}{\partial V} \right]$$
$$= kT \left[0 + \frac{N}{V} - \frac{\beta N^2}{2V^2} \right] = \frac{NkT}{V} - \frac{N^2kT\beta}{2V^2}$$
$$Nk = nR, nN_a = N$$
$$pV = nRT - \frac{N_a n\beta}{2} \left(\frac{nRT}{V} \right) \qquad \frac{pV}{n} = p\overline{V} = RT - \frac{N_a \beta}{2} \left(\frac{RT}{\overline{V}} \right) = RT + \frac{B_2(T)}{\overline{V}} \left(\frac{RT}{\overline{V}} \right)$$
units Volume/mol.

$$p\overline{V} = RT + B_2(T)\left(\frac{RT}{\overline{V}}\right)$$
 Virial Equation of State

$$B_{2}(T) = -\frac{N_{a}\beta}{2} = -2\pi N_{a} \int_{0}^{\infty} dr r^{2} [e^{-u(r)/kT} - 1] \qquad 2nd \text{ VIRIAL COEFFICIENT}$$

[The 1st VIRIAL COEFFICIENT, B₁(T), is 1!]

As $T \to \infty$, $B_2(T) \to 0$ because $[e^{-u(r)/kT} - 1] \to 0$ At finite high T, $B_2(T) > 0$ At low T, $B_2(T) < 0$

Typical Values of $B_2(T) \dots$ in cm³ mol⁻¹

	500K	400K	300K	200K
Ar	+7	-1.0	-15.5	-47.4
C ₂ H ₆	-52	-96	-182	-410

For $\rho = \frac{n}{V} = 4.46 \times 10^{-5} \text{ mol cm}^{-3}$									
		Ar		C_2H_6					
T(K)	p _{ideal} (atm)	$\mathbf{p}_{\mathrm{actual}}$	% dif	$\mathbf{p}_{\mathrm{actual}}$	% dif				
500	1.8299	1.83047	+0.03	1.8258	-0.2				
400	1.4639	1.4638	-0.003	1.4576	-0.4				
300	1.0979	1.0971	-0.07	1.0889	-0.8				
200	0.7320	0.7304	-0.2	0.7186	-1.82				
		k [ε is well	124 <i>K</i> depth. We his later.]	$\frac{\varepsilon}{k}$ =	≤ 200 <i>K</i>				

Trend is toward too low p at low T and too high p at high T. There is a difference between Ar and benzene in the sense that benzene seems always to have too low p. If we include more terms in $Z \dots$

$$p\overline{V} = RT + B_{2}(T)\left(\frac{RT}{\overline{V}}\right) + B_{3}(T)\left(\frac{RT}{\overline{V}^{2}}\right) + \dots = \sum_{n=1}^{N} B_{n}(T)RT\overline{V}^{1-n} \qquad \begin{bmatrix} B_{1}(T) \equiv 1 \end{bmatrix}$$

2nd VIRIAL 3rd VIRIAL
COEFF COEFF

Calculate $B_2(T)$ for Hard Sphere Potential

Hard sphere potential:
$$u(r) = \begin{cases} \infty & r < \sigma \\ 0 & r \ge \sigma \end{cases}$$

where $\sigma \equiv$ sum of two atomic radii

$$B_{2}(T) = \frac{-N_{a}}{2}\beta \qquad \beta = 4\pi \int_{0}^{\infty} dr r^{2} \left[e^{-u(r)/kT} - 1 \right]$$
$$\beta = 4\pi \int_{0}^{\sigma} dr r^{2} \left(e^{-\infty} - 1 \right) + 4\pi \int_{\sigma}^{\infty} dr r^{2} \left(e^{-0} - 1 \right)$$

$$\beta = -4\pi \int_{0}^{\sigma} r^{2} dr + 4\pi \cdot 0$$

$$\beta = \frac{-4\pi}{3}\sigma^{3} \Rightarrow \qquad B_{2}(T) = \frac{2\pi}{3}\sigma^{3}N_{a}$$

INDEPENDENT OF
TEMPERATURE

What is physical significance of B_2 for hard sphere potential?

IT IS THE EXCLUDED VOLUME

Simple geometric argument independent of statistical mechanics:

Hard-sphere equation of state, correct through $B_2(T)$, is

$$p\overline{V} = RT + B_2 \frac{RT}{\overline{V}} \approx RT + B_2 p \quad \text{because} \qquad \left[\frac{RT}{\overline{V}} = p - B_2 \frac{RT}{\overline{V}^2} \approx p\right]$$
$$p(\overline{V} - B_2) = RT$$
$$p\left(\overline{V} - N_a \frac{2\pi\sigma^3}{3}\right) = RT$$
$$\text{excluded}$$

Compare to van der Waals eqn. of state:

The true molar volume \overline{V} is reduced by b. A volume \overline{V} + b is required to give values of p, R, T that are consistent with the ideal gas law.

So far we have considered only the repulsive part of the potential.

Now include attractions: e.g., square well, Sutherland, or Lennard-Jones.

Square well potential: $u(r) = \begin{cases} \infty & r < \sigma \\ -\varepsilon_b & \sigma \le r < \lambda\sigma \\ 0 & r > \lambda\sigma \end{cases}$

See Non-Lecture: Result is excluded volume + term of opposite sign.

Sutherland potential: $u(r) = \begin{cases} \infty & r < \sigma \\ -\varepsilon \left(\frac{\sigma}{r}\right)^6 & r \ge \sigma \end{cases}$ [goal is to express β in terms of σ, ε]

$$\beta = 4\pi \int_{0}^{\infty} dr r^{2} \left[e^{-u(r)/kT} - 1 \right]$$

$$= 4\pi \int_{0}^{\sigma} dr r^{2} \left(e^{-\infty} - 1 \right) + 4\pi \int_{\sigma}^{\infty} dr r^{2} \left(\underbrace{e^{\varepsilon\sigma^{6}/r^{6}kT}}_{\text{expand}} - 1 \right)$$

$$- \frac{4}{3}\pi\sigma^{3} \qquad 4\pi \int_{\sigma}^{\infty} dr r^{2} \left(1 + \varepsilon\sigma^{6}/r^{6}kT - 1 \right) \text{ for modest (i.e., not too small) } kT \text{ (weak attraction)}$$

$$4\pi\varepsilon\sigma^{6}/kT \int_{\sigma}^{\infty} dr r^{-4} = \frac{4}{3}\pi\sigma^{3}\frac{\varepsilon}{kT}$$
If T is too small, must keep more terms in the expansion.

 $\beta = \frac{4}{3}\pi\sigma^3 \left(\frac{\varepsilon}{kT} - 1\right) \quad \beta \text{ is T-dependent and can be positive at low-T and negative at high-T}$

$$B_2(T) = -\frac{N_a}{2}\beta(T) = \frac{2}{3}\pi\sigma^3 N_a - \frac{2}{3}\pi\sigma^3 N_a \varepsilon/kT$$

hard sphere from attractive part of u(r)

High T: T-independent, excluded volume repulsion dominates

Low T: linear variation of $B_2(T)$ vs. 1/T. Use this to determine ε .

Equation of state:

$$p\overline{V} = RT + B_2 \frac{RT}{\overline{V}} \approx RT + B_2p$$

$$p(\overline{V} - B_2) = RT$$

$$p(\overline{V} - N_a \frac{2\pi\sigma^3}{3}) + p \cdot \frac{2}{3}\pi\sigma^3 N_a \varepsilon/kT = RT$$

$$replace p/kT in second term$$

$$\frac{p}{kT} = \frac{p}{pV/N} = \frac{nN_a}{V} = \frac{N_a}{\overline{V}}$$

$$p(\overline{V} - N_a \frac{2\pi\sigma^3}{3}) + \frac{2}{3}\pi\sigma^3 N_a^2 \varepsilon/\overline{V} = RT$$
Define $b = N_a \frac{2\pi\sigma^3}{3}, a = \frac{2}{3}\pi\sigma^3 N_a^2 \varepsilon$

$$p(\overline{V} - b) + a/\overline{V} \approx (p + a/\overline{V}^2)(\overline{V} - b) = RT \quad (ab/\overline{V}^2 \approx 0)$$
van der Waals Eqn. of State!

Non-Lecture

Square well potential:
$$u(r) = \begin{cases} \infty & r < \sigma \\ -\varepsilon_b & \sigma \le r < \lambda\sigma \\ 0 & r > \lambda\sigma \end{cases}$$
$$\beta = 4\pi \int_0^{\infty} dr r^2 \left[e^{-u(r)/kT} - 1 \right] = 4\pi \int_0^{\sigma} dr r^2 \left(e^{-\omega} - 1 \right) + 4\pi \int_{\sigma}^{\lambda\sigma} dr r^2 \left(e^{\varepsilon_b/kT} - 1 \right) + 4\pi \int_{\lambda\sigma}^{\infty} dr r^2 \left(e^{-0} - 1 \right) = -\frac{4}{3}\pi\sigma^3 + \frac{4}{3}\pi \left[(\lambda\sigma)^3 - \sigma^3 \right] \underbrace{\left(e^{\varepsilon_b/kT} - 1 \right)}_{\text{expand this}} + 0 = \left(1 + \varepsilon_b/kT - 1 \right) \text{ for modest } kT > \varepsilon_b \text{ (weak attraction)} \end{cases}$$
$$\beta = -\frac{4}{3}\pi\sigma^3 + \frac{4}{3}\pi\sigma^3 (\lambda^3 - 1)\varepsilon_b/kT \qquad \text{i.e., if T is not too low}$$
$$B_2(T) = -\frac{N_a}{2}\beta(T) = \frac{2}{3}\pi\sigma^3 N_a - \frac{2}{3}\pi\sigma^3 N_a \left(\lambda^3 - 1 \right)\varepsilon_b/kT$$

excluded volume + term of opposite sign!

$$p\overline{V} = RT + B_2 \frac{RT}{\overline{V}} \approx RT + B_2 p$$

$$p(\overline{V} - B_2) = RT$$

$$p\left(\overline{V} - N_a \frac{2\pi\sigma^3}{3}\right) + p \cdot \frac{2}{3}\pi\sigma^3 N_a \left(\lambda^3 - 1\right) \varepsilon_b / kT = RT$$

$$\frac{p}{kT} = \frac{p}{PV/N} = \frac{nN_a}{V} = \frac{N_a}{\overline{V}}$$

$$p\left(\overline{V} - N_a \frac{2\pi\sigma^3}{3}\right) + \frac{2}{3}\pi\sigma^3 N_a^2 \left(\lambda^3 - 1\right) \varepsilon_b / \overline{V} = RT$$
Define $b = N_a \frac{2\pi\sigma^3}{3}, a = \frac{2}{3}\pi\sigma^3 N_a^2 \left(\lambda^3 - 1\right) \varepsilon_b$

$$p(\overline{V} - b) + a / \overline{V} \approx \left(p + a / \overline{V}^2\right) (\overline{V} - b) = RT \quad (ab / \overline{V}^2 \approx 0)$$
van der Waals Eqn. of State!