MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.62 Lecture \#20: Virial Equation of State

Goal: Derive Virial Eqn. of State

$$
\begin{aligned}
Q & =\frac{(2 \pi m k T)^{3 N / 2}}{N!h^{3 N}} Z(N, V, T)=\frac{(2 \pi m k T)^{3 N / 2}}{N!h^{3 N}} V^{N} \exp \left[\frac{N \beta}{2}\left(\frac{N}{V}\right)\right] \\
\ln Q & =\ln \left[\frac{(2 \pi m k T)^{3 N / 2}}{N!h^{3 N}}\right]+N \ln V+\frac{N \beta}{2}\left(\frac{N}{V}\right)
\end{aligned}
$$

Plugging $\ln \mathrm{Q}$ into equation for $\mathrm{p} \ldots$

$$
\begin{aligned}
& \mathrm{p}=\mathrm{kT}\left[\frac{\partial(\text { constants })}{\partial \mathrm{V}}+\frac{\mathrm{N} \partial \ln \mathrm{~V}}{\partial \mathrm{~V}}+\frac{\partial\left(\mathrm{N}^{2} \beta / 2 \mathrm{~V}\right)}{\partial \mathrm{V}}\right] \\
&=\mathrm{kT}\left[0+\frac{\mathrm{N}}{\mathrm{~V}}-\frac{\beta \mathrm{N}^{2}}{2 \mathrm{~V}^{2}}\right]=\frac{\mathrm{NkT}}{\mathrm{~V}}-\frac{\mathrm{N}^{2} \mathrm{kT} \beta}{2 \mathrm{~V}^{2}} \\
& \mathrm{Nk}=\mathrm{nR}, \mathrm{nN}_{\mathrm{a}}=\mathrm{N} \\
& \mathrm{pV}=\mathrm{nRT}-\frac{\mathrm{N}_{\mathrm{a}} \mathrm{n} \beta}{2}\left(\frac{\mathrm{nRT}}{\mathrm{~V}}\right) \quad \frac{\mathrm{pV}}{\mathrm{n}} \equiv \mathrm{p} \overline{\mathrm{~V}}=\mathrm{RT}-\frac{\mathrm{N}_{\mathrm{a}} \beta}{2}\left(\frac{\mathrm{RT}}{\overline{\mathrm{~V}}}\right) \equiv \mathrm{RT}+\mathrm{B}_{2}(\mathrm{~T})\left(\frac{\mathrm{RT}}{\overline{\mathrm{~V}}}\right) \\
& p \bar{V}=R T+B_{2}(T)\left(\frac{R T}{\bar{V}}\right) \quad \text { Virial Equation of State } \\
& \mathrm{B}_{2}(\mathrm{~T})=-\frac{\mathrm{N}_{\mathrm{a}} \beta}{2}=-2 \pi \mathrm{~N}_{\mathrm{a}} \int_{0}^{\infty} \mathrm{dr} \mathrm{r}^{2}\left[\mathrm{e}^{-\mathrm{u}(\mathrm{r}) / \mathrm{kT}}-1\right] \quad \text { 2nd VIRIAL Colume/mol. } \\
& {\left[\mathrm{The}^{2} \mathrm{st} \text { VIRIAL COEFFICIENT, BICIENT }(\mathrm{T}), \text { is } 1!\right] }
\end{aligned}
$$

As $T \rightarrow \infty, B_{2}(T) \rightarrow 0$ because $\left[e^{-u(r) / k T}-1\right] \rightarrow 0$
At finite high T, $B_{2}(T)>0$
At low T, $B_{2}(T)<0$
VIRIAL EQUATION OF STATE

Typical Values of $\mathrm{B}_{2}(\mathrm{~T}) \ldots$ in $\mathrm{cm}^{3} \mathrm{~mol}^{-1}$

	500 K	400 K	300 K	200 K
Ar	+7	-1.0	-15.5	-47.4
$\mathrm{C}_{2} \mathrm{H}_{6}$	-52	-96	-182	-410

For $\rho=\frac{n}{V}=4.46 \times 10^{-5} \mathrm{~mol} \mathrm{~cm}^{-3}$

T(K)	$\mathrm{p}_{\text {ideal }}(\mathrm{atm})$	Ar		$\mathrm{C}_{2} \mathrm{H}_{6}$	
		$\mathrm{p}_{\text {actual }}$	\% dif	$\mathrm{p}_{\text {actual }}$	\% dif
500	1.8299	1.83047	+0.03	1.8258	-0.2
400	1.4639	1.4638	-0.003	1.4576	-0.4
300	1.0979	1.0971	-0.07	1.0889	-0.8
200	0.7320	0.7304	-0.2	0.7186	-1.82
		$\frac{\varepsilon}{k}=$ [ε is well will see	$24 K$ epth. We is later.]		$00 K$

Trend is toward too low p at low T and too high p at high T . There is a difference between Ar and benzene in the sense that benzene seems always to have too low p . If we include more terms in Z ...

$\underline{\text { Calculate } B_{2}(T) \text { for Hard Sphere Potential }}$

$$
\text { Hard sphere potential: } u(r)=\left\{\begin{array}{cc}
\infty & \mathrm{r}<\sigma \\
0 & \mathrm{r} \geq \sigma
\end{array}\right.
$$

where $\sigma \equiv$ sum of two atomic radii

$$
\begin{aligned}
\mathrm{B}_{2}(\mathrm{~T}) & =\frac{-\mathrm{N}_{\mathrm{a}}}{2} \beta \quad \beta=4 \pi \int_{0}^{\infty} \operatorname{dr} \mathrm{r}^{2}\left[\mathrm{e}^{-\mathrm{u}(\mathrm{r}) / \mathrm{kT}}-1\right] \\
\beta & =4 \pi \int_{0}^{\sigma} \mathrm{dr} \mathrm{r}^{2}\left(\mathrm{e}^{-\infty}-1\right)+4 \pi \int_{\sigma}^{\infty} \mathrm{dr} \mathrm{r}^{2}\left(\mathrm{e}^{-0}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \beta=-4 \pi \int_{0}^{\sigma} r^{2} d r+4 \pi \cdot 0 \\
& \beta=\frac{-4 \pi}{3} \sigma^{3} \Rightarrow \quad B_{2}(T)=\frac{2 \pi}{3} \sigma^{3} N_{a} \\
& \text { INDEPENDENT OF } \\
& \text { TEMPERATURE }
\end{aligned}
$$

What is physical significance of B_{2} for hard sphere potential?

IT IS THE EXCLUDED VOLUME

Simple geometric argument independent of statistical mechanics:

a volume $\frac{4 \pi}{3} \sigma^{3}$

Hard-sphere equation of state, correct through $\mathrm{B}_{2}(\mathrm{~T})$, is

$$
\left.\begin{array}{l}
\mathrm{p} \overline{\mathrm{~V}}=\mathrm{RT}+\mathrm{B}_{2} \frac{\mathrm{RT}}{\overline{\mathrm{~V}}} \approx \mathrm{RT}+\mathrm{B}_{2} \mathrm{p} \quad \text { because } \quad[\frac{\mathrm{RT}}{\overline{\mathrm{~V}}}=\mathrm{p}-\underbrace{\mathrm{B}_{2} \frac{\mathrm{RT}}{\overline{\mathrm{~V}}^{2}}}_{\text {small }} \approx \mathrm{p}] \\
\mathrm{p}\left(\overline{\mathrm{~V}}-\mathrm{B}_{2}\right)=\mathrm{RT} \\
\mathrm{p}(\overline{\mathrm{~V}}-\underbrace{\mathrm{N}_{\mathrm{a}} \frac{2 \pi \sigma^{3}}{3}}_{\underbrace{}_{\text {excluded }}})
\end{array}\right)=\mathrm{RT} \quad .
$$

Compare to van der Waals eqn. of state:
$\binom{$ The true molar volume $\overline{\mathrm{V}}$ is reduced by b. A volume $\overline{\mathrm{V}}+\mathrm{b}$ is required to }{ give values of $\mathrm{p}, \mathrm{R}, \mathrm{T}$ that are consistent with the ideal gas law. }

So far we have considered only the repulsive part of the potential.
Now include attractions: e.g., square well, Sutherland, or Lennard-Jones.
Square well potential: $u(r)= \begin{cases}\infty & r<\sigma \\ -\varepsilon_{b} & \sigma \leq r<\lambda \sigma \\ 0 & r>\lambda \sigma\end{cases}$
See Non-Lecture: Result is excluded volume + term of opposite sign.
Sutherland potential: $u(r)=\left\{\begin{array}{ll}\infty & r<\sigma \\ -\varepsilon\left(\frac{\sigma}{r}\right)^{6} & r \geq \sigma\end{array} \quad\right.$ [goal is to express β in terms of σ, ε]

$$
\begin{aligned}
& \beta=4 \pi \int_{0}^{\infty} d r r^{2}\left[e^{-u(r) / k T}-1\right] \\
& =4 \pi \int_{0}^{\sigma} d r r^{2}\left(e^{-\infty}-1\right)+4 \pi \int_{\sigma}^{\infty} d r r^{2}(\underbrace{e^{\varepsilon \sigma^{6} / r^{6} k T}}_{\text {expand }}-1) \\
& -\frac{4}{3} \pi \sigma^{3} \quad 4 \pi \int_{\sigma}^{\infty} d r r^{2}\left(1+\varepsilon \sigma^{6} / r^{6} k T-1\right) \text { for modest (i.e.,not too small) } k T \text { (weak attraction) } \\
& 4 \pi \varepsilon \sigma^{6} / k T \int_{\sigma}^{\infty} d r r^{-4}=\frac{4}{3} \pi \sigma^{3} \frac{\varepsilon}{k T} \quad \begin{array}{l}
\text { If T is too small, must keep } \\
\text { more terms in the expansion. }
\end{array}
\end{aligned}
$$

$\beta=\frac{4}{3} \pi \sigma^{3}\left(\frac{\varepsilon}{k T}-1\right) \quad \beta$ is T-dependent and can be positive at low-T and negative at high-T

$$
B_{2}(T)=-\frac{N_{a}}{2} \beta(T)=\underbrace{\frac{2}{3} \pi \sigma^{3} N_{a}}_{\text {hard sphere }}-\underbrace{\frac{2}{3} \pi \sigma^{3} N_{a} \varepsilon / k T}_{\text {from attractive part of u(r) }}
$$

High T: T-independent, excluded volume repulsion dominates

Low T : linear variation of $B_{2}(T)$ vs. $1 / T$. Use this to determine ε.
Equation of state:

$$
\begin{aligned}
& \mathrm{p} \overline{\mathrm{~V}}=\mathrm{RT}+\mathrm{B}_{2} \frac{\mathrm{RT}}{\overline{\mathrm{~V}}} \approx \mathrm{RT}+\mathrm{B}_{2} \mathrm{p} \\
& \mathrm{p}\left(\overline{\mathrm{~V}}-\mathrm{B}_{2}\right)=\mathrm{RT} \\
& \mathrm{p}\left(\overline{\mathrm{~V}}-\mathrm{N}_{\mathrm{a}} \frac{2 \pi \sigma^{3}}{3}\right)+\mathrm{p} \cdot \frac{2}{3} \pi \sigma^{3} \mathrm{~N}_{\mathrm{a}} \varepsilon / \mathrm{kT}=\mathrm{RT}<\text { replace } \mathrm{p} / \mathrm{kT} \text { in second term } \\
& \qquad \frac{p}{k T}=\frac{p}{p V / N}=\frac{n N_{a}}{V}=\frac{N_{a}}{\bar{V}} \\
& p\left(\bar{V}-N_{a} \frac{2 \pi \sigma^{3}}{3}\right)+\frac{2}{3} \pi \sigma^{3} N_{a}^{2} \varepsilon / \bar{V}=R T \\
& \text { Define } b=N_{a} \frac{2 \pi \sigma^{3}}{3}, a=\frac{2}{3} \pi \sigma^{3} N_{a}^{2} \varepsilon \\
& p(\bar{V}-b)+a / \bar{V} \approx\left(p+a / \bar{V}^{2}\right)(\bar{V}-b)=R T \quad\left(a b / \bar{V}^{2} \approx 0\right) \\
& \quad \text { van der Waals Eqn. of State! }
\end{aligned}
$$

Non-Lecture
Square well potential: $u(r)= \begin{cases}\infty & r<\sigma \\ -\varepsilon_{b} & \sigma \leq r<\lambda \sigma \\ 0 & r>\lambda \sigma\end{cases}$
$\beta=4 \pi \int_{0}^{\infty} d r r^{2}\left[e^{-u(r) / k T}-1\right]$
$=4 \pi \int_{0}^{\sigma} d r r^{2}\left(e^{-\infty}-1\right)+4 \pi \int_{\sigma}^{\lambda \sigma} d r r^{2}\left(e^{\varepsilon_{b} / k T}-1\right)+4 \pi \int_{\lambda \sigma}^{\infty} d r r^{2}\left(e^{-0}-1\right)$
$=-\frac{4}{3} \pi \sigma^{3}+\frac{4}{3} \pi\left[(\lambda \sigma)^{3}-\sigma^{3}\right] \underbrace{\left(e^{\varepsilon_{b} / k T}-1\right)}_{\text {expand this }}+0$
$\approx\left(1+\varepsilon_{b} / k T-1\right)$ for modest $k T>\varepsilon_{b}$ (weak attraction)
$\beta=-\frac{4}{3} \pi \sigma^{3}+\frac{4}{3} \pi \sigma^{3}\left(\lambda^{3}-1\right) \varepsilon_{b} / k T$
i.e., if T is not too low
$B_{2}(T)=-\frac{N_{a}}{2} \beta(T)=\frac{2}{3} \pi \sigma^{3} N_{a}-\frac{2}{3} \pi \sigma^{3} N_{a}\left(\lambda^{3}-1\right) \varepsilon_{b} / k T$ excluded volume + term of opposite sign!

$$
\begin{gathered}
p \bar{V}=R T+B_{2} \frac{R T}{\bar{V}} \approx R T+B_{2} p \\
p\left(\bar{V}-B_{2}\right)=R T \\
p\left(\bar{V}-N_{a} \frac{2 \pi \sigma^{3}}{3}\right)+p \cdot \frac{2}{3} \pi \sigma^{3} N_{a}\left(\lambda^{3}-1\right) \varepsilon_{b} / k T=R T \\
\frac{p}{k T}=\frac{p}{P V / N}=\frac{n N_{a}}{V}=\frac{N_{a}}{\bar{V}} \\
p\left(\bar{V}-N_{a} \frac{2 \pi \sigma^{3}}{3}\right)+\frac{2}{3} \pi \sigma^{3} N_{a}^{2}\left(\lambda^{3}-1\right) \varepsilon_{b} / \bar{V}=R T \\
\text { Define } b=N_{a} \frac{2 \pi \sigma^{3}}{3}, a=\frac{2}{3} \pi \sigma^{3} N_{a}^{2}\left(\lambda^{3}-1\right) \varepsilon_{b} \quad \\
p(\bar{V}-b)+a / \bar{V} \approx\left(p+a / \bar{V}^{2}\right)(\bar{V}-b)=R T \quad\left(a b / \bar{V}^{2} \approx 0\right)
\end{gathered}
$$

van der Waals Eqn. of State!

