MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.62 Lecture \#17: Chemical Equilibrium. II. Examples

Readings: Hill, pp. 182-187

Maczek, pp. 83-92
Metiu, pp. 191-196

2 Dissociation of a Diatomic Molecule
$\mathrm{AB} \rightleftarrows \mathrm{A}+\mathrm{B}$
p is in units of bar because the standard state $\quad \mathrm{p}^{\circ}=1 \mathrm{bar}=10^{5}$ pascal. But all terms in statistical mechanical expression for K_{p} are evaluated in S. I. units. Be careful!

$$
\mathrm{K}_{\mathrm{p}}=\frac{(2 \pi \mu)^{3 / 2}(\mathrm{kT})^{5 / 2}}{\mathrm{~h}^{3} \mathrm{p}} \frac{\mathrm{~g}_{0, \mathrm{~B}} \mathrm{~g}_{0, \mathrm{~A}}}{\mathrm{~g}_{0, \mathrm{AB}}} \frac{\sigma \theta_{\mathrm{rot}}}{\mathrm{~T}}\left(1-\mathrm{e}^{-\theta_{\mathrm{vib}} / \mathrm{T}}\right) \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}}
$$

$$
\text { where } \mu=\frac{\mathrm{m}_{\mathrm{A}} \mathrm{~m}_{\mathrm{B}}}{\mathrm{~m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}}=\frac{\mathrm{m}_{\mathrm{A}} \mathrm{~m}_{\mathrm{B}}}{\mathrm{~m}_{\mathrm{AB}}} \quad \text { reduced mass }
$$

$\mathrm{kg} /$ molecule for SI

$$
\begin{array}{ll}
& \mathrm{I}_{2} \rightleftarrows 2 \mathrm{I} \\
\mathrm{~m}_{\mathrm{I}}=0.1269 \mathrm{~kg} \mathrm{~mol}^{-1} & \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{I}}^{2}}{\mathrm{p}_{\mathrm{I}_{2}}} \quad \text { [p's in bar] } \\
\mathrm{g}_{0}, \mathrm{I}=4 \mathrm{~g}_{0}, \mathrm{I}_{2}=1 & \mu_{\mathrm{I}_{2}}=0.06345 \mathrm{~kg} \mathrm{~mol}^{-1} \\
\omega_{\mathrm{e}}=214.5 \mathrm{~cm}^{-1} & \sigma_{\mathrm{I}_{2}}=2 \\
\mathrm{~B}_{\mathrm{e}}=0.03737 \mathrm{~cm}^{-1} & \theta_{\text {vib }}=308.6 \mathrm{~K} \\
& \theta_{\text {rot }}=0.05377 \mathrm{~K}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{q}_{\mathrm{A}}^{*} / \mathrm{N}\right)\left(\mathrm{q}_{\mathrm{B}}^{*} / \mathrm{N}\right)}{\left(\mathrm{q}_{\mathrm{AB}}^{*} / \mathrm{N}\right)} \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}}[\text { unitless }]=\frac{\left(\mathrm{p}_{\mathrm{A}} / \mathrm{p}^{\circ}\right)\left(\mathrm{p}_{\mathrm{B}} / \mathrm{p}^{\circ}\right)}{\left(\mathrm{p}_{\mathrm{AB}} / \mathrm{p}^{\circ}\right)} \\
& K_{p}=\frac{\left(q_{\text {trans }, B} / N\right)\left(q_{\text {trans }, A} / N\right)}{\left(q_{\text {trans }, A B} / N\right)} \frac{g_{0, B} g_{0, A}}{g_{0, A B}} \frac{q_{\text {rot, }, B} q_{\text {rot }, A}}{q_{\text {rot, } A B}} \frac{q_{v i b, B}^{*} q_{v i b, A}^{*}}{q_{v i b, A B}^{*}} e^{+\Delta D_{0}^{0} / R T} \\
& \mathrm{~K}_{\mathrm{p}}=\frac{\left(2 \pi \mathrm{~m}_{\mathrm{B}}\right)^{3 / 2}(\mathrm{kT})^{5 / 2}}{\mathrm{~h}^{3} \mathrm{p}} \frac{\left(2 \pi \mathrm{~m}_{\mathrm{A}}\right)^{3 / 2}(\mathrm{kT})^{5 / 2}}{\mathrm{~h}^{3} \mathrm{p}} \frac{\mathrm{~h}^{3} \mathrm{p}}{\left(2 \pi \mathrm{~m}_{\mathrm{AB}}\right)^{3 / 2}(\mathrm{kT})^{5 / 2}} \\
& \times \frac{\mathrm{g}_{0, \mathrm{~B}} \mathrm{~g}_{0, \mathrm{~A}}}{\mathrm{~g}_{0, \mathrm{AB}}} \cdot 1 \cdot 1 \cdot \frac{\sigma \theta_{\text {rot, } \mathrm{AB}}}{\mathrm{~T}} \cdot 1 \cdot 1\left(1-\mathrm{e}^{-\theta_{\text {vib, AB }} / \mathrm{T}}\right) \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}}
\end{aligned}
$$

$\mathrm{D}_{0}^{0}, \mathrm{I}_{2}=12440 \mathrm{~cm}^{-1}=17889 \mathrm{~K} \quad$ (determined by laser spectroscopy!)
[Be careful about units here!]

$$
\begin{aligned}
& \Delta \mathrm{D}_{0}^{0}=\sum_{\mathrm{p}} \mathrm{p}\left(\mathrm{D}_{0}^{0}\right)-\sum_{\mathrm{r}} \mathrm{r}\left(\mathrm{D}_{0}^{0}\right)=0-(17889 \mathrm{~K})=-17889 \mathrm{~K}
\end{aligned}
$$

$1 \mathrm{bar}=10^{5}$ pascal. 1 pascal $=1 \mathrm{~N} / \mathrm{m}^{2} . \quad 1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\left(13.115 \mathrm{~T}^{5 / 2}\right)(16) \frac{0.1074}{\mathrm{~T}}\left(1-\mathrm{e}^{-308.6 / \mathrm{T}}\right) \mathrm{e}^{-17889 / \mathrm{T}} \\
& \mathrm{~K}_{\mathrm{p}}=22.537 \mathrm{~T}^{3 / 2}\left(1-\mathrm{e}^{-308.6 / \mathrm{T}}\right) \mathrm{e}^{-17889 / \mathrm{T}}
\end{aligned}
$$

$\mathrm{T}[\mathrm{K}]$	K_{p} (calc)	$\mathrm{K}_{\mathrm{p}}($ expt $)$	$\%$ error
1274	0.1761	0.170 ± 0.001	3%
1173	$4.9999 \cdot 10^{-2}$	$(4.68 \pm 0.03) \cdot 10^{-2}$	2.6%
1073	$1.14 \cdot 10^{-2}$	$1.10 \cdot 10^{-2}$	3%
973	$1.93 \cdot 10^{-3}$	$1.82 \cdot 10^{-3}$	5.4%
872	$2.13 \cdot 10^{-4}$	$(1.84 \pm 0.17) \cdot 10^{-4}$	-14%

probably more accurate than expt because K_{p} is so small at low T, that partial pressue of dissociated I atoms is too small to measure accurately
M. J. Perlman and G. K.

Rollefson, J. Chem.
Phys. 9, 362 (1941)

3 Isotope Exchange Reaction

$$
\begin{aligned}
& \mathrm{H}_{2}+\mathrm{D}_{2} \rightleftarrows 2 \mathrm{HD} \\
& K_{p}=\left[\frac{\left(q_{H D}^{*} / N\right)^{2}}{\left(q_{H_{2}}^{*} / N\right)\left(q_{D_{2}}^{*} / N\right)}\right] e^{+\Delta D_{0}^{0} / R T} \\
& K_{p}=\frac{\left(q_{\text {trans }, H D} / N\right)^{2}}{\left(q_{\text {trans }, \mathrm{H}_{2}} / N\right)\left(q_{\text {trans }, \mathrm{D}_{2}} / N\right)} \frac{g_{0, H D}^{2}}{g_{0, \mathrm{H}_{2}} g_{0, \mathrm{D}_{2}}} \frac{q_{\text {vib }, H D}^{* 2}}{q_{v i b, \mathrm{H}_{2}}^{*} q_{\text {vib, } \mathrm{D}_{2}}^{*}} \frac{q_{\text {rot }, \mathrm{HD}}^{2}}{q_{\text {rot }, \mathrm{H}_{2}} q_{\text {rot }, \mathrm{D}_{2}}} e^{+\Delta D_{0}^{0} / R T} \\
& \mathrm{~K}_{\mathrm{p}}=\frac{\left(2 \pi \mathrm{~m}_{\mathrm{HD}}\right)^{3}(\mathrm{kT})^{5}}{\mathrm{~h}^{6} \mathrm{p}^{2}} \frac{\mathrm{~h}^{3} \mathrm{p}}{\left(2 \pi \mathrm{~m}_{\mathrm{H}_{2}}\right)^{3 / 2}(\mathrm{kT})^{5 / 2}} \frac{\mathrm{~h}^{3} \mathrm{p}}{\left(2 \pi \mathrm{~m}_{\mathrm{D}_{2}}\right)^{3 / 2}(\mathrm{kT})^{5 / 2}} \frac{\mathrm{~g}_{0, \mathrm{HD}}^{2}}{\mathrm{~g}_{0, \mathrm{H}_{2}} \mathrm{~g}_{0, \mathrm{D}_{2}}} \\
& \frac{\left(1-e^{-\theta_{v i b, H_{2}} / T}\right)\left(1-e^{-\theta_{v i b, D_{2}} / T}\right)}{\left(1-e^{-\theta_{v i b, H D} / T}\right)^{2}}\left(\frac{k T}{h c B_{e}^{H D} \sigma_{H D}}\right)^{2}\left(\frac{\mathrm{hcB}_{\mathrm{e}}^{\mathrm{H}_{2}} \sigma_{\mathrm{H}_{2}}}{\mathrm{kT}}\right)\left(\frac{\mathrm{hcB}_{\mathrm{e}^{\mathrm{D}}} \sigma_{\mathrm{D}_{2}}}{\mathrm{kT}}\right) \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}} \\
& \mathrm{~m}_{\mathrm{H}_{2}}=2 \mathrm{amu} \\
& \sigma_{\mathrm{H}_{2}}=2 \\
& \mathrm{~g}_{0}\left(\mathrm{H}_{2}\right)=1 \\
& \mathrm{D}_{0}^{0}\left(\mathrm{H}_{2}\right)=36,100 \mathrm{~cm}^{-1} \\
& \mathrm{~m}_{\mathrm{HD}}=3 \mathrm{amu} \quad \sigma_{\mathrm{HD}}=1 \quad \mathrm{~g}_{0}(\mathrm{HD})=1 \\
& D_{0}^{0}(\mathrm{HD})=36,394 \mathrm{~cm}^{-1} \\
& \mathrm{~m}_{\mathrm{D}_{2}}=4 \mathrm{amu} \\
& \sigma_{\mathrm{D}_{2}}=2 \\
& \mathrm{~g}_{0}\left(\mathrm{D}_{2}\right)=1 \\
& \mathrm{D}_{0}^{0}\left(\mathrm{D}_{2}\right)=36,742 \mathrm{~cm}^{-1} \\
& \begin{array}{lll}
\omega_{\mathrm{e}}\left(\mathrm{H}_{2}\right)=4401 \mathrm{~cm}^{-1} & \theta_{\text {vib }}^{\mathrm{H}_{2}}=6337 \mathrm{~K} & \mathrm{~B}_{\mathrm{e}}\left(\mathrm{H}_{2}\right)=60.8 \mathrm{~cm}^{-1} \\
\omega_{\mathrm{e}}(\mathrm{HD})=3813 \mathrm{~cm}^{-1} & \theta_{\text {vib }}^{\mathrm{HD}}=5419 \mathrm{~K} & \mathrm{~B}_{\mathrm{e}}(\mathrm{HD})=45.7 \mathrm{~cm}^{-1} \\
\omega_{\mathrm{e}}\left(\mathrm{D}_{2}\right)=3116 \mathrm{~cm}^{-1} & \theta_{\text {vib }}^{\mathrm{D}_{2}}=4487 \mathrm{~K} & \mathrm{~B}_{\mathrm{e}}\left(\mathrm{D}_{2}\right)=30.4 \mathrm{~cm}^{-1}
\end{array} \\
& \Delta \mathrm{D}_{0}^{0}=\sum_{\mathrm{p}} \mathrm{p}\left(\mathrm{D}_{0}\right)-\sum_{\mathrm{r}} \mathrm{r}\left(\mathrm{D}_{0}\right) \\
& \Delta D_{0}^{0}=2(36,394)-[36,100+36,742] \\
& =-54 \mathrm{~cm}^{-1}=-78 \mathrm{~K}
\end{aligned}
$$

What is K_{p} at $\mathrm{T}=298 \mathrm{~K}$?

DEPENDENCE OF K p ON T

$$
\mathrm{I}_{2} \rightleftarrows 2 \mathrm{I}
$$

$$
\mathrm{H}_{2}+\mathrm{D}_{2} \rightleftarrows 2 \mathrm{HD}
$$

Qualitative difference in behaviors:

$$
\begin{array}{cc}
\mathrm{I}_{2} \rightleftarrows 2 \mathrm{I} & \mathrm{H}_{2}+\mathrm{D}_{2} \rightleftarrows 2 \mathrm{HD} \\
\mathrm{~K}_{\mathrm{p}} \approx \frac{\mathrm{q}_{\text {trans-I }}^{2}}{\mathrm{q}_{\text {trans }-\mathrm{I}_{2}} \mathrm{q}_{\text {rot }} \mathrm{q}_{\text {vib }}} \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}} & \mathrm{~K}_{\mathrm{p}} \approx \frac{\mathrm{q}_{\text {trans }, \mathrm{HD}}^{2} \mathrm{q}_{\text {rot, } \mathrm{HD}}^{2} \mathrm{q}_{\text {vib }, \mathrm{HD}}^{2} \mathrm{e}^{+\Delta D_{o}^{0} / \mathrm{RT}}}{\mathrm{q}_{\text {trans }, \mathrm{H}_{2}} \mathrm{q}_{\text {trans }, \mathrm{D}_{2}} \mathrm{q}_{\text {rot }, \mathrm{H}_{2}} \mathrm{q}_{\mathrm{vib}, \mathrm{H}_{2}} \mathrm{q}_{\text {rot }, \mathrm{D}_{2}} \mathrm{q}_{\mathrm{vi},, \mathrm{D}_{2}}}
\end{array}
$$

$$
\begin{aligned}
& K_{p}=\frac{m_{H D}^{3}}{m_{H_{2}}^{3 / 2} m_{D_{2}}^{3 / 2}} \frac{g_{0, H D}^{2}}{g_{0, H_{2}} g_{0, D_{2}}} \frac{\left(1-e^{-\theta_{v i b}^{H} / T}\right)\left(1-e^{-\theta_{v i b}^{D_{2}} / T}\right)}{\left(1-e^{-\theta_{v i b}^{H D} / T}\right)^{2}} \frac{\mathrm{~B}_{\mathrm{e}}^{\mathrm{H}_{2}} B_{e}^{D_{2}}}{\left(\mathrm{~B}_{\mathrm{e}}^{\mathrm{HD}}\right)^{2}} \frac{\sigma_{\mathrm{H}_{2}} \sigma_{\mathrm{D}_{2}}}{\sigma_{\mathrm{HD}}} \mathrm{e}^{+\Delta D_{0}^{0} / R T} \\
& \mathrm{~K}_{\mathrm{p}}=\frac{\left(0.003 / 6 \cdot 10^{23}\right)^{3}}{\left(0.002 / 6.10^{23}\right)^{3 / 2}\left(0.004 / 6.10^{23}\right)^{3 / 2}} \frac{1^{2}}{1 \cdot 1} \frac{\left(1-\mathrm{e}^{-4487 / 298}\right)}{\left(1-\mathrm{e}^{-5419 / 298}\right)^{2}} \\
& \times\left(1-\mathrm{e}^{-6337 / 298}\right) \frac{(60.8)(30.4)}{(45.7)^{2}} \frac{2 \cdot 2}{1} \mathrm{e}^{-78 / 298}=3.27 \\
& 383 \quad 3.47 \quad 3.50 \\
& \begin{array}{lll}
741 & 3.82 & 3.75
\end{array}
\end{aligned}
$$

$\mathrm{q}_{\text {trans I }} \approx \mathrm{q}_{\text {trans }}$
(ignore factor of 2 in mass)

$$
\underset{\text { ignoring }}{\text { mass }}\left\{\begin{array}{l}
\mathrm{q}_{\text {trans }, \mathrm{HD}} \simeq \mathrm{q}_{\text {trans, } \mathrm{H}_{2}} \simeq \mathrm{q}_{\text {trans }, \mathrm{D}_{2}} \\
\text { functions }
\end{array}\left\{\frac{3^{2}}{2 \cdot 4}\right]^{3 / 2} \approx 1 .\right.
$$

$\mathrm{K}_{\mathrm{p}} \propto \underset{\mathrm{q}_{\text {rot }} \mathrm{q}_{\text {vib }}}{ } \mathrm{e}^{+\Delta \mathrm{D}_{0}^{\mathrm{D}} / \mathrm{RT}}$
$\mathrm{K}_{\mathrm{p}} \propto \sigma^{2} \mathrm{e}^{+\Delta \mathrm{D}_{0}^{0} / \mathrm{RT}}$
$\mathrm{q}_{\text {trans }} \simeq 10^{30}, \mathrm{q}_{\text {rot }} \simeq 10^{3}, \mathrm{q}_{\text {vib }} \simeq 1, \Delta \mathrm{D}_{0}^{0} \simeq-18,000 \mathrm{~K}$
$K_{p} \propto 10^{27} e^{-18,000 / T}$

* large T dependence and large K_{p} because of 10^{27} factor - gain in translational entropy due to change in number of moles
* results in shift of equilibrium toward separated atoms at high T
* actually $\mathrm{q}_{\text {trans }} \propto \mathrm{T}^{5 / 2}, \frac{1}{\mathrm{q}_{\mathrm{rot}}} \propto \frac{1}{\mathrm{~T}}$, the pre-exponential factor is T-
dependent
* as T increases, both pre-
exponential and exponential factors increase and shift equilibrium toward dissociation.

Recall from 5.60:

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}(\mathrm{T})=\Delta \mathrm{H}^{\circ}(\mathrm{T})-\mathrm{T} \Delta \mathrm{~S}^{\circ}(\mathrm{T})=-\mathrm{RT} \ln \mathrm{~K}(\mathrm{~T}) \\
& \mathrm{K}(\mathrm{~T})=\underset{\substack{\text { prexponential } \\
\text { factor }}}{\mathrm{e}^{\Delta \mathrm{S}^{\circ}(\mathrm{T}) / \mathrm{R}}} \mathrm{e}^{-\Delta \mathrm{H}^{\circ}(\mathrm{T}) / \mathrm{RT}}
\end{aligned}
$$

This gives us an intuitive understanding of the T-dependence of equilibrium constants. Mostly, $\Delta \mathrm{S}^{\circ}(\mathrm{T})$ is determined by change in number of moles (strong T-dependence), secondarily in changes in floppiness (approximately T-independent). Mostly $\Delta \mathrm{H}^{\circ}(\mathrm{T})$ is determined by bond energies (or differences in dissociation energies), but if you want to compute $K(T)$ from microscopic quantities, use $K(T)=e^{-\Delta G^{\circ} / R T}$ and use statistical mechanics to calculate $\Delta \mathrm{G}^{\circ}(\mathrm{T})$ directly, not both $\Delta \mathrm{H}^{\circ}(\mathrm{T})$ and $\Delta \mathrm{S}^{\circ}(\mathrm{T})$ separately.

In using statistical mechanics to compute equilibrium constants, it is computationally most compact and intuitively most instructive to assemble the relevant factors in

$$
\frac{\left(\mathrm{q}_{\mathrm{C}}^{*} / \mathrm{N}\right)^{\mathrm{c}}\left(\mathrm{q}_{\mathrm{D}}^{*} / \mathrm{N}\right)^{\mathrm{d}}}{\left(\mathrm{q}_{\mathrm{A}}^{*} / \mathrm{N}\right)^{\mathrm{a}}\left(\mathrm{q}_{\mathrm{B}}^{*} / \mathrm{N}\right)^{\mathrm{b}}}
$$

by assembling all of the relevant information factored according to degee of freedom
(translation)(electronic)(vibration)(rotation)

Translation
Key factors are \quad * does the number of moles change

* the only species-specific quantity is mass

Electronic

Key factor is degeneracy of ground state
For $\mathrm{CO} \mathrm{X}^{1} \Sigma^{+} \rightleftarrows \quad \mathrm{C}\left({ }^{3} \mathrm{P}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$
g: $1 \quad 3 \times 3 \quad 3 \times 3$
The electronic factor is usually negligibly T-dependent, unless there are low-lying states. For C , the ${ }^{3} \mathrm{P}$ state is "regular" and $\mathrm{J}=0$ is lowest. For O , the ${ }^{3} \mathrm{P}$ state is "inverted" and $\mathrm{J}=2$ is lowest. So at low-T the degeneracies are 1 and 5 , not 9 and 9 , but at T where atoms have appreciable population, $\mathrm{kT} \gg$ spin-orbit splittings for atoms from the first three rows of the periodic table.

Vibration

Atoms have $\mathrm{q}_{\mathrm{vib}}^{*}=1$ (no vibrational d/f). For polyatomic molecules, the lowest frequency vibrations result in small but dominant T-dependence. It is easy to guess whether a molecule has low-frequency vibrations.

Rotation

Atoms have $\mathrm{q}_{\mathrm{rot}}=1$ (no rotational d/f). Generally, all rotations are in the high-T limit. Thus $\mathrm{q}_{\text {rot }} \propto \mathrm{T}^{3 / 2}$ (non-linear polyatomic) or T^{1} (linear molecule).

For isotope effects in a diatomic molecule: $\mathrm{q}_{\mathrm{vib}}, \mathrm{q}_{\mathrm{rot}}$, and zero-point energy

$$
\begin{aligned}
& \omega_{\mathrm{e}} \propto[\mu]^{-1 / 2} \\
& \mathrm{~B}_{\mathrm{e}} \propto[\mu]^{-1}
\end{aligned}
$$

In a polyatomic molecule, the relationships between atomic masses and ω_{ei} $(1 \leq \mathrm{i} \leq 3 \mathrm{~N}-6)$ and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are more complicated.

