MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.62 Physical Chemistry II Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

<u>5.62 Lecture #13 Supplement</u>: Nuclear Spin and Symmetry Number

$P_{12}\Psi = \pm \Psi$	is required for all pairs of identical particles. + for boson, – for fermion. (Identical means <i>same</i> nucleus, <i>not same</i> chemical environment.)			
$(\mathbf{P}_{12})^2 \boldsymbol{\Psi} = \boldsymbol{\Psi}$	means that there are only two classes of symmetry functions for each group of identical nuclei.			
e.g. benzene	6H	$I_i = 1/2$	I = 3,1 para: degeneracy 4, 2, 0 ortho: degeneracy	7 + 3 = 10 9 + 5 + 1 = 15
	6C	$I_{i} = 0$	only $I_{tot} = 0$	

To construct Ψ with legal permutation symmetry with respect to ψ_{rot} , we need to consider superpositions of bonded networks. e.g. the C₂ symmetry operation permutes pairs of C's and pairs of H's. Yet the permutation must be even with respect to C's.

How many bonded networks are there?

$$\frac{6!6!}{2\cdot 6}$$

We divide by 12 because this is the overcounting due to rotationally related identical structures. 12 is the symmetry number.

We divide q_{rot} by the symmetry number because we are correcting the number of distinct bonded networks. We normally do not include the number of bonded networks because this is merely a function of the total number of identical atoms. This permutation degeneracy is conserved as long as atoms are conserved.

But actually every rotation-vibration level of benzene is $\frac{6!6!}{12} = 43,200$ fold degenerate! But we never worry about this degeneracy because, for normal levels of internal excitation, bonds are conserved. But at high excitation, bond-breaking isomerization occurs.

This means that the appropriate symmetry group for a molecule is called "The Molecular Symmetry Group", a subgroup of the "Complete Permutation Inversion Group". The subgroup consists of all "feasible" permutations and permutation-inversions.