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5.62 Lecture #10: 	Quantum vs. Classical. qtrans. 
Equipartition. Internal Degrees of Freedom. 

GOAL: 	Calculate average translational energy via quantum and classical
descriptions and compare results. 

–QUANTUM DESCRIPTION — Calculate — average kinetic energy in x-directionxε


εx = ∫
∞	

εxP (εx )dεx0


kT
P (εx ) = (πkT)−1/2 εx 
−1/2e−εx


∞
⎛	 1 ⎞1/2 
1/2e−εx kTdεx =εx	 ⎝⎜ πkT⎠⎟ ∫0 
εx


⎛ 1 ⎞1/2 kT (πkT)1/2 = 
1
kTεx = ⎝⎜ πkT⎠⎟ 2 2 

This is not an accident. It is our first glimpse of “equipartition” of energy, 
1
2kT into each 

independent degree of freedom. 

Integral table for two useful integrals 

x1/2e−axdx = 
π1/2 

∫
∞ 

2a3/2 (dimension:  length3/2 )
0 

∫0 

∞	
x−1/2e−axdx = (π a)1/2 (dimension:  length1/2 ) 

Since the translational energies in each dimension are uncorrelated, average total energy
is the sum of the average energy in each direction. Also, as a consequence of the
separability of the Hamiltonian with respect to x, y, z coordinates, total E is sum of Ex + 
Ey + Ez. 

ε – = 


1

2kT + 

1
2kT + 

1
2kT = 2

3
kT 

Each degree of freedom contributes 
1
2kT to total energy. 

Agrees with result from ensemble average 

– – –
ε
 +
ε
 +
ε
x y z 
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⎛ ∂ lnQtrans ⎞	 3ε = E = kT2 

⎝⎜ ∂T ⎠⎟ = ∑ PαEα = 
2 
kT


N,V α


CLASSICAL MECHANICAL DESCRIPTION — calculate – ε 

State of a molecule is described by p  momentum, q  position. The energy of~ ~
N–molecule system is ε(p 3N, q 3N), which is a continuous function of 6N variables.~ ~ 

q trans ∑ e−ε i kT 
let's assume this by analogy ∫∫ e−ε(p

~
,q
~

)/kT d p d q= ~ ~ 
i 

quantum ⇒	 classical — integral over 3
momentum and 3 position
coordinates for each particle 

= px
2 + py

2 + pz
2 

↓ 
( )qtrans,cl = ∫∫∫ dqxdqydqz ∫∫∫ dpxdpydpze−p

2 / 2mkT

= V ∫ dpxe
−px

2 /2mkT ∫ dpye
−py

2 /2mkT ∫ dpze
−pz

2 /2mkT 

= V⎣⎢
⎡ 

−∞ 
dpxe

px
2 /2mkT 

⎦⎥
⎤ ( )3/2 ∫ ∞ 3 

= V 2πmkT 

[qtrans,cl. should be dimensionless, but this has units m3l6t–3 = h3] 

The need to divide by a factor of h3 was recognized by Boltzmann even before Planck “invented”
h. It is impossible for a trajectory in phase space to intersect itself. [Why? Because the classical 
Hamiltonian is a function of q,p. If the system is at q(t1), p(t1) at t1 then the H tells us the values 
of q and p at t1 + δt. If the system returns to q(t1), p(t1) at t2, then it must move to q(t1 + δt), p(t1 

+ δt) at t2 + δt.] The ergodic hypothesis requires trajectories to visit “each cell” of phase space of
volume h3N, not “each location” in phase space. This avoids the problem of self-intersecting
trajectories. 

⎛ 2πmkT ⎞ 3/2 

Comparing to qtrans,qm = ⎝⎜ h2 ⎠⎟ V , we see that we need a factor of h3 in the denominator 

of qtrans,cl.. In fact, it turns out that to construct a partition function from a classical Hamiltonian,
this h–3 factor is required, so our assumption above must be corrected: 

= 
h
1
3 ∫ ∫ e−εclassical kTd p dq (dimensionless) qtrans,cl ~ ~ 

⎛ 2πmkT ⎞ = 
qtrans,cl 1 ⎡⎣∫ ∫ e−εclassical kTdp dq⎤⎦ = 

N! ⎝⎜ h2 ⎠⎟=Qtrans,cl 

N

N! N!h3N	

N VN 3N/2 

revised 2/29/08 8:52 AM 



   

5.62 Spring 2008	 Lecture #10, Page 3 

CONCLUSION: Classical and quantum descriptions of translational degrees of freedom yield
consistent results. QM is operating in classical limit because energies of the translational states
are so closely spaced that they can be approximated as continuous, as in classical mechanics. 

kT = 0.6 kcal mol–1 at 300K 

∆ε = 10–20 kcal mol–1 

(particle in box) 

The average molecular translational energy, 2
3 

kT, is independent of the kind of molecule, or 
more precisely, independent of the energy level spacings because these spacings are ~ 1020 times 
smaller than kT. Spacings don't change much from He, to C6H6, to DNA. If T were decreased to 

– 10–19 K, then He, C6H6, and DNA would have different Etrans. 

CLASSICAL EQUIPARTITION OF ENERGY PRINCIPLE


Each squared momentum or position term in the energy of a particle contributes 2
1 

kT to the 
average energy; according to this principle, translation along each coordinate axis contributes
1 1 
2 kT; rotation about each principal axis contributes 2 kT; and each vibrational mode contributes 

kT (2
1 

kT each for kinetic and potential energy) to the average energy. 

g(ε)e 
3N ,q

~
3N ) 

−ε(p3N ,q3N ) kT

−ε (p kT	 Classical Boltzmann 
~ distribution function( ) =P ε

∫∫ e ~ ~ dp
~
3N dq

~
3N N!h3N 

g(ε) is the density of states, often denoted as ρ(ε). It has units (energy)–1. 

ε = ∫0 

∞
εP ε( )dε = εx + εy + εz = 

1 1 1 3kT + kT + kT = kT
2 2 2 2 

INTERNAL DEGREES OF FREEDOM — FACTORIZATION OF Q 

ATOMS — 	 have one internal degree of freedom
ELECTRONIC degree of freedom 
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MOLECULES — have other degrees of freedom 

ELECTRONIC, VIBRATION, AND ROTATION, each of which contributes

to total energy and to other macroscopic properties.


Nuclear hyperfine? [Nuclear spin degeneracy factors. LATER.]


Internal energy adds to translational energy to get total energy 

ε = εtrans + εint 

quantum #'s internal quantum #'s
N,M,L 

where εint = energy from internal degrees of freedom 

q = ∑ e−εi kT ( ) kT = ∑ e− εtrans +εint 

i 

all molecular 
states 

all molecular 
states 

We do not have to start over. qtrans factors out. 

kT )(∑ e−εint kT )q = (∑ e−ε trans 

translational states internal states 

q = qtrans • qint ←	 INTERNAL MOLECULAR 
PARTITION FUNCTION 
⎞

Q = (qtransqint )N ⎛ qNtrans N= 
N! ⎝⎜ N! ⎠⎟ 

qint

Q = QtransQint CANONICAL PARTITION 
FUNCTION 

Qtrans = 
Qtrans 
N 

N! 

CANONICAL TRANSLATIONAL 
PARTITION FUNCTION 

Qint = Qint
N CANONICAL INTERNAL 

PARTITION FUNCTION 
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NOTE: N! was included with Qtrans. This is because it's the translational motion that causes the 
positions of identical particles to be interchanged, requiring the factor of N! The internal motions
don't interchange particles.

 Classically 

Qcl = Qtrans,cl Qint,cl 

Qtrans,cl = 
qtrans,cl 
N 

N! 
= 
[ e− ε trans /kT∫ dpdq]N 

N!h3 N 

Qint,cl = qint 
N = d 


p3N ∫ d 

q3N e−εint /kT h3N 

CONTRIBUTION OF INTERNAL DEGREES OF FREEDOM TO MACROSCOPIC 
PROPERTIES 

⎛ ∂ lnQ ⎞ ⎛ ∂ lnQtransQint ⎞E = kT2 

⎝⎜ ∂T ⎠⎟ 
= kT2 

⎝⎜ ∂T ⎠⎟ N,V N,V 

E = kT2 ⎛ ∂ lnQtrans ⎞ + kT2 ⎛
⎝⎜ 
∂ lnQint ⎞ 

⎝⎜ ∂T ⎠⎟ N,V ∂T ⎠⎟ N,V 

E = Etrans Eint 
(will equipartition be applicable here?) 

A = −kTlnQ = −kTlnQtransQint 
= −kTlnQtrans + −kTlnQint 
= Atrans + Aint 

Likewise: S = Strans + Sint 

⎛
⎜
⎝

p = kT 
∂ lnQ 
∂V 

⎞
⎟
⎠


But for pressure: = ptrans + pint = ptrans 
N,T 

because no V dependence for internal coordinates 

Could use the Classical Mechanical approach to compute any average quantity, e.g. 


q3d 

p3x 

q3 , 

p3( )e 

q3 


p3 

∫  ∫ d 

q3d 

p3e−ε 


q3 , 

p3( ) kT 

(
 ) kT−ε ∫  ∫ d 
, 

x = 
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The factors of h–3 in numerator and denominator cancel.


The Classical picture will prove extremely useful when there are inter-particle interactions.


Non-Lecture 
Example of a classical mechanical calculation: particle bound in a deep well near a solid
surface. 

V(z) 

ε 

Lβ 

00 α 

0 ≤ z ≤ α pz = [2mε]1/2 εz 2m 

α ≤ z ≤ L pz = [2m(ε−β)]1/2 εz = p2z 2m +β 

To compute qCl we need 

L	 ∞ 
e−ε(z,pz ) kT 

∞ α 2 2mkT 
∞ L 2 2mkT qz = ∫0 

dz∫−∞ 
dpz = ∫−∞ 

dpz ∫0 
dze− pz + ∫−∞ 

dpz ∫α 
dze−pz 

= [α + (L − α)e−β kT ] ∞ 
dpze

−pz
2 2mkT ∫−∞


= [α + (L − α)e−β kT ][2πmkT ]1/2


]⎡ 2πmkT ⎤
1/2


qz = [α + (L − α)e−β kT 

⎣⎢ h2 ⎦⎥ 

The multiplicative contributions from the x and y directions do not have the pre-factor 

]⎡ 2πmkT ⎤
3/2 

L2qCl = [α + (L − α)e−β kT 

⎣⎢ h2 ⎦⎥ 

for kT  β = ⎡ 2πmkT ⎤
3/2 

qCl	 ⎣⎢ h2 ⎦⎥ 
L3 

⎡ 2πmkT ⎤
3/2 

for kT  β qCl = 
⎣⎢ h2 ⎦⎥ 

L2α 

= pz 
2 
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Of course this derivation is not quantitatively correct because it is necessary to assume that kT  
β. It is also incorrect because the exact quantum mechanical energy level in the deep, near-
surface well is not at the bottom of the well. But this calculation reveals the qualitative change
in qtrans between the low-T limit (all molecules are adsorbed, thus confined to a volume L2α) and
the high-T limit (all molecules are desorbed). 

revised 2/29/08 8:52 AM 




