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5.62 Lecture #7: Translational Part of Boltzmann

Partition Function


CANONICAL PARTITION FUNCTION FOR INDEPENDENT, INDISTINGUISHABLE
MOLECULES 

Q(N,V,T) = qN/N! 

approximation valid for q  N, not assured to be always valid
“corrected Boltzmann statistics” 

where q = ∑ e−εi /kT molecular partition function

i


sum over states of one of the molecules 

GOAL: to determine for what systems q  N is valid. 

PROCEDURE: 1) develop a (simplified) physical picture for q

 2) calculate a value for q 

1) PROPERTIES OF q 

q is a measure of the total number of molecular states available to one
molecule at some temperature. 

–εi/kT
e proportional to population in state i at T 

q ≈ total # of states accessible at T 

( kT q)population in single-particle state i in N atom system: N e−εi 

where the term in parentheses is the probability of finding any single particle in state i.
Consider molecules A and B with energy levels sketched below. 
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state of energy ε i 

1. Molecule A has more states because they are more closely spaced in energy. 

2. The total number of thermally accessible states in molecule A is larger because there
are more states with εi less than or comparable to kT. Contribution of each state to the 
sum in the definition of q depends on its energy relative to kT. 

(kT is an energy) (k = 1.38 × 10–23 J/K)
Therefore 

qA > qB 

So, q plays an essential role in determining the probability that a molecule is in state i. 

Ne–εi/ kT 

Since ni = 
q 

ni = Pi = 
e–εi/ kT 

= 
e−εi 

∑ e−εm kT

kT 

N q 
m 

probability of finding molecule in state i 

Pi depends not only on the energy of the i-th state, εi, relative to kT, but on q, the total
number of states accessible. 

e−εi kT e−εi 

e−εm kT∑ 
kT 

Pi = = 
q 

m 

BOLTZMANN DISTRIBUTION FUNCTION 

Consider molecules A and B again. Both A and B have a state i at energy εi. Therefore 
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Probability of molecule A in state i Probability of molecule B in state i 

–ε
i/
kT –ε

i/
kT 

Pi
A =


⎛

⎜
⎝

ni 
N


⎞

Pi
B =


⎛

⎜
⎝

ni 
N


⎞
e e
⎟
⎠


⎟
⎠


=
 =

qA qBA B 

It follows that 

Pi
A qB < 1= 
Pi
B qA 

Probability of molecule A being in state i with energy εi is less than probability of 
molecule B being in state i with energy εi because there are more states in molecule A. 

Consider the same molecule A. The ratio of the probabilities of finding A in two states j
and k or the ratio of populations in the two states j and k are 

e–ε j kT / qA 
–(εj–εk)/kT 

kT / qA
= e 

Pj
A n

= 
Pk
A n

What happens to q as T → 0? What happens to all Pj? 

A 
j
A 
k 

2. CALCULATION OF q 

NEED: εi, the energies of the states of a molecule: translation, rotation, vibration,

electronic.


START: with the energies of the translational states to calculate qtrans


= 

e–εk 

qtrans 

TRANSLATIONAL MOLECULAR PARTITION FUNCTION 

The εi for translational states are solutions to the Schrödinger equation for a particle in a
box. 

The translational energy of a particle of mass m contained in a box of dimensions a, b, c
with quantum numbers L, M, N is 

ε(L,M,N) = h
2 

8m 

⎡

⎢
⎣

L2 M2 N2 

a2 
+ 
b2 

+ 
c2 

⎤

⎥
⎦
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qtrans = ∑ e−ε(L,M,N)/kT 

⎡
 ⎤⎞ 
⎥
⎦
⎟
⎠ 

−h2 L2 M2 N2 

a2 
+ 

⎛
∞

∑
∞

∑ 
∞

∑ ⎢
⎣


qtrans =
 exp ⎜
⎝


+

b2 c28mkT L=1 M=1 N=1 

∞ ⎛ −h2L2 ⎞ ⎤
⎥ ⎢

⎡∑
∞ 

exp 
⎛ −h2M2 ⎞ ⎤

⎥ ⎢
⎡∑

∞ 

exp 
⎛ −h2N2 ⎞ ⎤ 

⎥= ⎢
⎡∑exp 

⎝⎜ 8mkTa2 ⎠⎟ ⎦ ⎣M =1 ⎝⎜ 8mkTb2 ⎠⎟ ⎦ ⎣N=1 ⎝⎜ 8mkTc2 ⎠⎟ ⎦⎣L=1 

Need to evaluate sums 

−h2L2 −h2L2 −h2L2⎛
 ⎛⎞ ⎞
 ⎛
 ⎞
∞

∑
∞

∑
∞

∑−1 ≈
exp exp ⎜
⎝


exp ⎜
⎝


⎟
⎠

=
 ⎟

⎠

⎜
⎝


⎟
⎠
8mkTa2 8mkTa2 8mkTa2 

L=1 L=0 L=0 

Now h2 States are closely spaced in energy.
8mkTa2 

  1 
Approximate sum by an integral. 

−h2L2 −h2L2 

dLexp (−g2L2 ) = 
π1/2 

2g 

⎛
 ⎞
 ⎛
 ⎞
∞

∑ ∞ ∞ 

0
≈
 ∫
 dL ∫
exp exp ⎜

⎝

⎟
⎠


⎜
⎝


⎟
⎠

=


8mkTa2 8mkTa20
L=0 

1 2 
π1 2 h2⎛
 ⎞

⎟
⎠


with∫ ∞ 
e−g

2x2 dx = g = ⎜
⎝
8mkTa22g 0 

1 2 
−h2L2 8πa2mkT ⎛
 ⎛
⎞
 ⎞

⎟
⎠


∞ 

0
Therefore dLexp ∫
 ⎜

⎝

⎟
⎠

=
⎜
⎝
8mkTa2 4h2 

so 

⎜
⎝ 

⎞
⎟
⎠ 

1 2 

⎜
⎝ 

⎞
⎟
⎠ 

1 2 1 2 
2πa2mkT 2πb2mkT 

h2 

2πc2mkT 
h2 

⎛
 ⎛
 ⎛
 ⎞
⎟
⎠


=qtrans ⎜
⎝
 h2 

3 2 3 2 2πmkT 
h2 

2πmkT 
h2 

⎛
 ⎞
 ⎛
 ⎞

abc = V
⎜

⎝

⎟
⎠


⎜
⎝


⎟
⎠


=qtrans 

We have evaluated qtrans in terms of quantities we can know!!
What idealizations, if any, have we made? 

CHECK VALIDITY CONDITION FOR BOLTZMANN STATISTICS, qtrans  N. 
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Calculate qtrans for N2, 1 atm pressure, 1 mole, 273K 

=
m = 28g mol ×10−3 kg g 
6.0x1023 mol-1 

4.67 x 10–26 kg 

h = 6.63 x 10–34 J · s k = 1.38 x 10–23 J · K–1 

–3 3T = 273 K V = 22.4 liters = 22.4 x 10  m

⋅⋅

Unit check: 
kg ⋅ K–1 ⋅ K 

kg ⋅ m2 s–2 s2 

3 2 3/2 3/2 
kgJK–1K 

J2s2 
2πmkT ⎛
 ⎞
 ⎛
 ⎞
⎛
 ⎞


m3 m3V =
⎜
⎝


⎟
⎠
 ⎜

⎝

⎟
⎠


⎜
⎝


⎟
⎠


=

h2 

3/2 1

m2 

⎛
 ⎞

m3 UNITLESS ⎜

⎝

⎟
⎠


Plugging numbers for N2 @ 273K, 1 atm, 1 mole into qtrans yields: 

3 2 

V = 2.8 ×10302πmkT 
h2 

⎛
 ⎞

=qtrans ⎜
⎝


⎟
⎠


Check condition for Boltzmann statistics, q  N 

For 1 mole of N2 (in our volume of 22.4 liters), N = 6 × 1023 

N 6x1023 

= 2.1 × 10−7 
 1 as required = 

q 2.8x1030 

So ni = 
N
q 

e−εi /kT < 10−7  because e−εi /kT < 1 always 

• on average, less than 10–7 molecules per state 

• probability of more than 1 molecule in any state is very small (what is the
probability of finding 2 or more molecules in the εi level?) 

• corrected Boltzmann statistics OK for molecules at T > 300K 

Always use simple short cuts to avoid repetitive calculations. 

E.g. decrease T from 273K to 1 K 
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( ( )q 1K) = q 273K ⎡ 1 ⎤
3/2 

⎣⎢ 273⎦⎥ 
decrease V from 22.4L = 2.24 × 104 cm3 to 1 cm3 

( ( )q 1 cm3 ) = q 22.4L ⎡
⎣⎢ 2.24

1 
× 104 

⎤
⎦⎥ 

Check condition for corrected Boltzmann statistics, q > N, for 1 mole of electrons in 
V = 22.4 liters at T = 273K. 

All parameters are the same as in N2 calculation except for mass 

me = 0.0005 g · mol–1 

3/2 e− 

qtrans ⎛
 ⎞

Since q ∝ m3/2 : me 

mN2 

=
⎜
⎝


⎟
⎠


N2qtrans 

e− ⎛ 0.0005 ⎟
⎞3/2 

2.81×1030 = 2.4 ×1023qtrans = ⎜
⎝ 28 ⎠ N2 

 
qtrans 

So N 6x1023 

q 2.4x1023 not  1 != 

Can't use corrected Boltzmann statistics for electrons at T = 273K. 
Must use “Fermi-Dirac” statistics! At what T is Boltzmann statistics OK for 

an electron? 

Since corrected Boltzmann statistics are valid for atoms and molecules under the vast 
majority of conditions, we can now calculate Q, the canonical partition function for
indistinguishable molecules. 

Fermi-Dirac (fermions) and Bose-Einstein (bosons) statistics next lecture. 
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