MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.62 Lecture \#7: Translational Part of Boltzmann Partition Function

CANONICAL PARTITION FUNCTION FOR INDEPENDENT, INDISTINGUISHABLE MOLECULES

$$
\mathrm{Q}(\mathrm{~N}, \mathrm{~V}, \mathrm{~T})=\mathrm{q}^{\mathrm{N}} / \mathrm{N}!
$$

approximation valid for $\mathrm{q} \gg \mathrm{N}$, not assured to be always valid
"corrected Boltzmann statistics"
where $\mathrm{q}=\sum_{\mathrm{i}} \mathrm{e}^{-\varepsilon_{i} / k T}$ molecular partition function sum over states of one of the molecules

GOAL: to determine for what systems $\mathrm{q} \gg \mathrm{N}$ is valid.
PROCEDURE: 1) develop a (simplified) physical picture for q
2) calculate a value for q

1) PROPERTIES OF q

q is a measure of the total number of molecular states available to one molecule at some temperature.

$$
\begin{aligned}
& \mathrm{e}^{-\varepsilon_{\mathrm{i}} / \mathrm{kT}} \text { proportional to population in state } \mathrm{i} \text { at } \mathrm{T} \\
& \mathrm{q} \approx \text { total } \# \text { of states accessible at } \mathrm{T}
\end{aligned}
$$

population in single-particle state i in N atom system: $N\left(e^{-\varepsilon_{i} / k T} / q\right)$
where the term in parentheses is the probability of finding any single particle in state i . Consider molecules A and B with energy levels sketched below.

1. Molecule A has more states because they are more closely spaced in energy.
2. The total number of thermally accessible states in molecule A is larger because there are more states with ε_{i} less than or comparable to kT . Contribution of each state to the sum in the definition of q depends on its energy relative to kT .
$\left(\mathrm{kT}\right.$ is an energy) $\quad\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$
Therefore

$$
\mathrm{q}_{\mathrm{A}}>\mathrm{q}_{\mathrm{B}}
$$

So, q plays an essential role in determining the probability that a molecule is in state i .
Since $\overline{n_{i}}=\frac{N e^{-\varepsilon_{i} k T}}{q}$

$$
\frac{\overline{n_{i}}}{N}=P_{i}=\frac{e^{-\varepsilon_{i} k T}}{q}=\frac{e^{-\varepsilon_{i} / k T}}{\sum_{m} e^{-\varepsilon_{m} / k T}}
$$

probability of finding molecule in state i
P_{i} depends not only on the energy of the i -th state, ε_{i}, relative to kT , but on q , the total number of states accessible.

$$
\mathrm{P}_{\mathrm{i}}=\frac{\mathrm{e}^{-\varepsilon_{i} / k T}}{\mathrm{q}}=\frac{\mathrm{e}^{-\varepsilon_{\mathrm{i}} / k T}}{\sum_{\mathrm{m}} \mathrm{e}^{-\varepsilon_{\mathrm{m}} / k T}}
$$

BOLTZMANN DISTRIBUTION FUNCTION

Consider molecules A and B again. Both A and B have a state i at energy ε_{i}. Therefore

Probability of molecule A in state i Probability of molecule B in state i

$$
P_{i}^{A}=\left(\frac{\overline{n_{i}}}{N}\right)_{A}=\frac{e^{-\varepsilon_{i} k T}}{q_{A}} \quad P_{i}^{B}=\left(\frac{\overline{n_{i}}}{N}\right)_{B}=\frac{e^{-\varepsilon_{i} k T}}{q_{B}}
$$

It follows that

$$
\frac{\mathrm{P}_{\mathrm{i}}^{\mathrm{A}}}{\mathrm{P}_{\mathrm{i}}^{\mathrm{B}}}=\frac{\mathrm{q}_{\mathrm{B}}}{\mathrm{q}_{\mathrm{A}}}<1
$$

Probability of molecule A being in state i with energy ε_{i} is less than probability of molecule B being in state i with energy ε_{i} because there are more states in molecule A.

Consider the same molecule A. The ratio of the probabilities of finding A in two states j and k or the ratio of populations in the two states j and k are

$$
\frac{\mathrm{P}_{\mathrm{j}}^{\mathrm{A}}}{\mathrm{P}_{\mathrm{k}}^{\mathrm{A}}}=\frac{\overline{\mathrm{n}}_{\mathrm{j}}^{\mathrm{A}}}{\overline{\mathrm{n}}_{\mathrm{k}}^{\mathrm{A}}}=\frac{\mathrm{e}^{-\varepsilon_{j} / k T} / \mathrm{q}_{\mathrm{A}}}{\mathrm{e}^{-\varepsilon_{k} / k T} / \mathrm{q}_{\mathrm{A}}}=\mathrm{e}^{-\left(\varepsilon_{j}-\varepsilon_{\mathrm{k}}\right) / \mathrm{kT}}
$$

What happens to q as $T \rightarrow 0$? What happens to all P_{j} ?

2. CALCULATION OF q

NEED: ε_{i}, the energies of the states of a molecule: translation, rotation, vibration, electronic.

START: with the energies of the translational states to calculate $\mathrm{q}_{\mathrm{trans}}$

$\mathrm{q}_{\text {trans }}$
TRANSLATIONAL MOLECULAR PARTITION FUNCTION

The ε_{i} for translational states are solutions to the Schrödinger equation for a particle in a box.

The translational energy of a particle of mass m contained in a box of dimensions a, b, c with quantum numbers $\mathrm{L}, \mathrm{M}, \mathrm{N}$ is

$$
\varepsilon(L, M, N)=\frac{h^{2}}{8 m}\left[\frac{L^{2}}{a^{2}}+\frac{M^{2}}{b^{2}}+\frac{N^{2}}{c^{2}}\right]
$$

$$
\begin{aligned}
& \mathrm{q}_{\text {trans }}=\sum \mathrm{e}^{-\varepsilon(\mathrm{L}, \mathrm{M}, \mathrm{~N}) / \mathrm{kT}} \\
& \mathrm{q}_{\text {trans }}=\sum_{\mathrm{L}=1}^{\infty} \sum_{\mathrm{M}=1}^{\infty} \sum_{\mathrm{N}=1}^{\infty} \exp \left[\frac{-\mathrm{h}^{2}}{8 \mathrm{mkT}}\left(\frac{\mathrm{~L}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{M}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{N}^{2}}{\mathrm{c}^{2}}\right)\right] \\
&= {\left[\sum_{\mathrm{L}=1}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}^{2}}\right)\right]\left[\sum_{\mathrm{M}=1}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{M}^{2}}{8 \mathrm{mkTb}^{2}}\right)\right]\left[\sum_{\mathrm{N}=1}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~N}^{2}}{8 \mathrm{mkTc}^{2}}\right)\right] }
\end{aligned}
$$

Need to evaluate sums

$$
\sum_{\mathrm{L}=1}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}^{2}}\right)=\sum_{\mathrm{L}=0}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}^{2}}\right)-1 \approx \sum_{\mathrm{L}=0}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}^{2}}\right)
$$

$$
\text { Now } \frac{\mathrm{h}^{2}}{8 \mathrm{mkTa}^{2}} \ll 1 \quad \begin{aligned}
& \text { States are closely spaced in energy. } \\
& \text { Approximate sum by an integral. }
\end{aligned}
$$

$$
\sum_{\mathrm{L}=0}^{\infty} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa} \mathrm{a}^{2}}\right) \approx \int_{0}^{\infty} \mathrm{dL} \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}{ }^{2}}\right)=\int_{0}^{\infty} \mathrm{dL} \exp \left(-\mathrm{g}^{2} \mathrm{~L}^{2}\right)=\frac{\pi^{1 / 2}}{2 \mathrm{~g}}
$$

$$
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{g}^{2} \mathrm{x}^{2}} \mathrm{dx}=\frac{\pi^{1 / 2}}{2 \mathrm{~g}} \quad \text { with } \quad \mathrm{g}=\left(\frac{\mathrm{h}^{2}}{8 \mathrm{mkTa}^{2}}\right)^{1 / 2}
$$

Therefore $\quad \int_{0}^{\infty} d L \exp \left(\frac{-\mathrm{h}^{2} \mathrm{~L}^{2}}{8 \mathrm{mkTa}^{2}}\right)=\left(\frac{8 \pi \mathrm{a}^{2} \mathrm{mkT}}{4 \mathrm{~h}^{2}}\right)^{1 / 2}$
so

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{trans}}=\left(\frac{2 \pi \mathrm{a}^{2} \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{1 / 2}\left(\frac{2 \pi \mathrm{~b}^{2} \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{1 / 2}\left(\frac{2 \pi \mathrm{c}^{2} \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{1 / 2} \\
& \mathrm{q}_{\mathrm{trans}}=\left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{abc}=\left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{~V}
\end{aligned}
$$

We have evaluated qtrans in terms of quantities we can know!!
What idealizations, if any, have we made?
CHECK VALIDITY CONDITION FOR BOLTZMANN STATISTICS, $\mathrm{q}_{\mathrm{trans}} \gg \mathrm{N}$.

Calculate $\mathrm{q}_{\text {trans }}$ for $\mathrm{N}_{2}, 1 \mathrm{~atm}$ pressure, 1 mole, 273 K

$$
\begin{array}{ll}
\mathrm{m}=\frac{28 \mathrm{~g} / \mathrm{mol}^{2} 10^{-3} \mathrm{~kg} / \mathrm{g}}{6.0 \times 10^{23} \mathrm{~mol}^{-1}}=4.67 \times 10^{-26} \mathrm{~kg} \\
\mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1} \\
\mathrm{~T}=273 \mathrm{~K} & \mathrm{~V}=22.4 \text { liters }=22.4 \times 10^{-3} \mathrm{~m}^{3}
\end{array}
$$

Unit check:

$$
\begin{aligned}
& \left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{~V}=\left(\frac{\mathrm{kgJK}^{-1} \mathrm{~K}}{\mathrm{~J}^{2} \mathrm{~s}^{2}}\right)^{3 / 2} \mathrm{~m}^{3}=\left(\frac{\mathrm{kg} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~K}}{\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~s}^{2}}\right)^{3 / 2} \mathrm{~m}^{3} \\
& \left(\frac{1}{\mathrm{~m}^{2}}\right)^{3 / 2} \mathrm{~m}^{3} \quad \text { UNITLESS }
\end{aligned}
$$

Plugging numbers for $\mathrm{N}_{2} @ 273 \mathrm{~K}, 1 \mathrm{~atm}, 1$ mole into q trans yields:

$$
\mathrm{q}_{\text {trans }}=\left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{~V}=2.8 \times 10^{30}
$$

Check condition for Boltzmann statistics, $q \gg N$
For 1 mole of N_{2} (in our volume of 22.4 liters), $\mathrm{N}=6 \times 10^{23}$

$$
\frac{\mathrm{N}}{\mathrm{q}}=\frac{6 \times 10^{23}}{2.8 \times 10^{30}}=2.1 \times 10^{-7} \ll 1 \text { as required }
$$

So $\overline{n_{i}}=\frac{N}{q} e^{-\varepsilon_{i} / k T}<10^{-7}$ because $e^{-\varepsilon_{i} / k T}<1$ always

- on average, less than 10^{-7} molecules per state
- probability of more than 1 molecule in any state is very small (what is the probability of finding 2 or more molecules in the ε_{i} level?)
- corrected Boltzmann statistics OK for molecules at $\mathrm{T}>300 \mathrm{~K}$

Always use simple short cuts to avoid repetitive calculations.
E.g. decrease T from 273 K to 1 K

$$
\mathrm{q}(1 \mathrm{~K})=\mathrm{q}(273 \mathrm{~K})\left[\frac{1}{273}\right]^{3 / 2}
$$

decrease V from $22.4 \mathrm{~L}=2.24 \times 10^{4} \mathrm{~cm}^{3}$ to $1 \mathrm{~cm}^{3}$

$$
\mathrm{q}\left(1 \mathrm{~cm}^{3}\right)=\mathrm{q}(22.4 \mathrm{~L})\left[\frac{1}{2.24 \times 10^{4}}\right]
$$

Check condition for corrected Boltzmann statistics, $\mathrm{q}>\mathrm{N}$, for 1 mole of electrons in $\mathrm{V}=22.4$ liters at $\mathrm{T}=273 \mathrm{~K}$.

All parameters are the same as in N_{2} calculation except for mass

$$
\mathrm{m}_{\mathrm{e}}=0.0005 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

Since $\mathrm{q} \propto \mathrm{m}^{3 / 2} \quad: \quad \frac{\mathrm{q}_{\text {trans }}^{\mathrm{e}^{-}}}{\mathrm{q}_{\text {trans }}^{\mathrm{N}_{2}}}=\left(\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{N}_{2}}}\right)^{3 / 2}$

$$
\mathrm{q}_{\text {trans }}^{\mathrm{e}^{-}}=\left(\frac{0.0005}{28}\right)^{3 / 2} \underbrace{2.81 \times 10^{30}}_{\mathrm{q}_{\text {trans }}^{\mathrm{e}^{2}}}=2.4 \times 10^{23}
$$

So $\quad \frac{\mathrm{N}}{\mathrm{q}}=\frac{6 \times 10^{23}}{2.4 \times 10^{23}}$ not $\ll 1 \quad$!

Can't use corrected Boltzmann statistics for electrons at $\mathrm{T}=273 \mathrm{~K}$.
Must use "Fermi-Dirac" statistics! At what T is Boltzmann statistics OK for an electron?

Since corrected Boltzmann statistics are valid for atoms and molecules under the vast majority of conditions, we can now calculate Q , the canonical partition function for indistinguishable molecules.

Fermi-Dirac (fermions) and Bose-Einstein (bosons) statistics next lecture.

