QUANTUM MECHANICAL PARTICLE IN A BOX

Summary so far:

What is the "wavefunction" $\psi(x)$?

Max Born interpretation:
$|\psi(x)|^{2}=\psi^{*}(x) \psi(x) \quad$ is a probability distribution or probability density for the particle
$\therefore \quad|\psi(x)|^{2} d x$ is the probability of finding the particle in the interval between x and $x+d x$

This is a profound change in the way we view nature!! We can only know the probability of the result of a measurement - we can't always know it with certainty! Makes us re-think what is "deterministic" in nature.

Easy implication: Normalization of the wavefunction

$$
\Rightarrow \quad \int_{x_{1}}^{x_{2}}|\psi(x)|^{2} d x=\text { probability of finding particle in interval }
$$

The total probability of finding the particle somewhere must be 1 .
For a single particle in a box,

$$
\begin{gathered}
\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=\int_{0}^{a}|\psi(x)|^{2} d x=1 \quad \text { Normalization condition } \\
\int_{0}^{a} B^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x=1 \quad \Rightarrow \quad B=\sqrt{\frac{2}{a}} \\
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2,3, \ldots \quad \quad \text { Normalized wavefunction }
\end{gathered}
$$

Interpretation of $|\psi(x)|^{2}$ based on measurement

Each measurement of the position gives one result. Many measurements give a probability distribution of outcomes.

Expectation values or average values
For a discrete probability distribution
e.g.

$$
\begin{aligned}
\langle x\rangle & =\text { average value of } x \\
& =4(0.1)+6(0.1)+8(0.2)+10(0.4)+12(0.2) \\
& =4\left(P_{4}\right)+6\left(P_{6}\right)+8\left(P_{8}\right)+10\left(P_{10}\right)+12\left(P_{12}\right)
\end{aligned}
$$

where P_{x} is probability that measurement yields value " x "

$$
\Rightarrow \quad\langle x\rangle=\sum x P_{x}
$$

Now switch to continuous probability distribution

$$
\begin{aligned}
P_{x} & \rightarrow|\psi(x)|^{2} d x \\
\sum & \rightarrow \int \\
\Rightarrow \quad\langle x\rangle & =\int_{-\infty}^{\infty} x|\psi(x)|^{2} d x
\end{aligned}
$$

Similarly

$$
\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2}|\psi(x)|^{2} d x
$$

Often written in "sandwich" form

$$
\begin{aligned}
& \langle x\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) x \psi(x) d x \\
& \left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) x^{2} \psi(x) d x
\end{aligned}
$$

For particle in a box

$$
\langle x\rangle=\frac{2}{a} \int_{0}^{a} x \sin ^{2}\left(\frac{n \pi x}{a}\right) d x
$$

Integrate by parts $\rightarrow \quad\langle x\rangle=\frac{a}{2}$

The average particle position is in the middle of the box.

