SOLUTIONS TO THE SCHRÖDINGER EQUATION

Free particle and the particle in a box
Schrödinger equation is a $2^{\text {nd }}$-order diff. eq.

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)
$$

We can find two independent solutions $\phi_{1}(x)$ and $\phi_{2}(x)$
The general solution is a linear combination

$$
\psi(x)=A \phi_{1}(x)+B \phi_{2}(x)
$$

A and B are then determined by boundary conditions on $\psi(x)$ and $\psi^{\prime}(x)$.
Additionally, for physically reasonable solutions we require that $\psi(x)$ and $\psi^{\prime}(x)$ be continuous function.
(I) Free particle $\quad V(x)=0$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x)
$$

Define $\quad k^{2}=\frac{2 m E}{\hbar^{2}} \quad$ or $\quad E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
V(x)=0, \quad E=\frac{p^{2}}{2 m} \quad \Rightarrow \quad p^{2}=\hbar^{2} k^{2} \quad \Rightarrow \quad p=\hbar k
$$

de Broglie $p=\frac{h}{\lambda} \Rightarrow k=\frac{2 \pi}{\lambda}$

The wave eq. becomes $\quad \frac{\partial^{2} \psi(x)}{\partial x^{2}}=-k^{2} \psi(x)$
with solutions

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

Free particle $\quad \Rightarrow \quad$ no boundary conditions
$\Rightarrow \quad$ any A and B values are possible, any $E=\frac{\hbar^{2} k^{2}}{2 m}$ possible
So any wavelike solution (traveling wave or standing wave) with any wavelength, wavevector, momentum, and energy is possible.
(II) Particle in a box

$$
V(x)=\infty \quad(x<0, x>a)
$$

$$
V(x)=0 \quad(0 \leq x \leq a)
$$

Particle can't be anywhere with $V(x)=\infty$

$$
\Rightarrow \quad \psi(x<0, x>a)=0
$$

For $0 \leq x \leq a$, Schrödinger equation is like that for free particle.

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x) \\
\frac{\partial^{2} \psi(x)}{\partial x^{2}}=-k^{2} \psi(x) \quad \text { with same definition } \\
k^{2}=\frac{2 m E}{\hbar^{2}} \quad \text { or } E=\frac{\hbar^{2} k^{2}}{2 m}
\end{gathered}
$$

again with solutions

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

But this time there are boundary conditions!
Continuity of $\psi(x) \quad \Rightarrow \quad \psi(0)=\psi(a)=0$
(i) $\quad \psi(0)=A \cos (0)+B \sin (0)=0 \quad \Rightarrow \quad A=0$

$$
\text { (ii) } \quad \psi(a)=B \sin (k a)=0
$$

Can't take $B=0$ (no particle anywhere!)
Must have $\sin (k a)=0 \quad \Rightarrow \quad k a=n \pi \quad n=1,2,3, \ldots$
$\Rightarrow \quad k$ is not continuous but takes on discrete values $k=\frac{n \pi}{a}$
Thus integer evolves naturally !!
So solutions to the Schrödinger equation are

$$
\psi(0 \leq x \leq a)=B \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2,3, \ldots
$$

These solutions describe different stable (time-independent or "stationary") states with energies

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \Rightarrow E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}
$$

Energy is quantized!! And the states are labeled by a quantum number n which is an integer.

Properties of the stationary states
(a) The energy spacing between successive states gets progressively larger as n increases

(b) The wavefunction $\psi(x)$ is sinusoidal, with the number of nodes increased by one for each successive state

(c) The energy spacings increase as the box size decreases.

$$
E \propto \frac{1}{a^{2}}
$$

We've solved some simple quantum mechanics problems! The P-I-B model is a good approximation for some important cases, e.g. pi-bonding electrons on aromatics.

Electronic transitions shift to lower energies as molecular size increases!

