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WAVE-PARTICLE DUALITY of MATTER

Consequences (II)

!
Heisenberg Uncertainty Principle ΔxΔp

  x ≥ 2

Consider diffraction through a single slit
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Coming out of the slit, the electrons
D spread out to form a diffraction pattern

with width D.

x

v!

v!
xvΔ

This means the electrons must go through the slit with some range of
velocity components vx

x

Now consider a beam of electrons with de Broglie wavelength λ. The slit
restricts the possible positions of the electrons in the x direction: at the slit,
the uncertainty in the electron x-position is

xsΔ=
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Δv D λ λx ≈ = = 
v ! s Δx 

ΔxΔvx = λv  or ΔxΔpx = λ p 

h
But from deBroglie λ = 

p 

∴ ΔxΔpx = h 

So the position and momentum of a particle cannot both be determined with 
arbitrary position! Knowing one quantity with high precision means that the 
other must necessarily be imprecise! 

The conventional statement of the Heisenberg Uncertainty Principle is 

ΔxΔp ≥ x 2 

(depends on how “uncertainty” is defined: 1/e half-width, FWHM, etc.) 

Uncertainty can always be larger than ! 2 , but not smaller. 

Note that this sort of uncertainty is standard in classical wave mechanics. If 
you focus a light beam or a water wavelet to a small spot size, at the focus 
there is a wide range of propagation directions. What is new is the idea that 
particles inherently show wavelike behavior, with similar consequences. 

Implications for atomic structure 

Apply Uncertainty Principle to e- in H atom 

me = 9.11 x 10-31 kg Δx ≈ 10-10 m (1 Å) 
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! ! 1
Δpx ≥ ⇒ Δv ≥ ≈ x10−6 m s 

2Δx x 2mΔx 2 

Basically, if we know the e- is in the atom, then we can’t know its velocity at all! 

Bohr had assumed the electron was a particle with a known position and velocity. 
To complete the picture of atomic structure, the wavelike properties of the 
electron had to be included. 

So how do we properly represent where the particle is?? 

Schrödinger (1933 Nobel Prize) 

A particle in a “stable” or time-independent state can be represented 
mathematically as a wave, by a “wavefunction” ψ(x) (in 1-D) which is a solution to 
the differential equation 

Time-independent 
Schrödinger 

equation 
− 
!2 

2m 
∂2ψ 

∂x2 
+ V x x x( )ψ ( ) = Eψ ( ) 

potential energy total energy 

We cannot prove the Schrödinger equation. But we can motivate why it might be 
reasonable. 

φ1 (x,t) = Asin (kx −ωt) is a right-traveling wave. 

A v 

2πk = ω = 2πν λν = v
ω 

Similarly, a left-traveling wave can be represented as 

φ2 (x,t) = Asin (kx + ωt) . 

Both are solutions to the wave equation 
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∂2φ (x,t) 1 ∂2φ (x,t)
= 

∂x2 v2 ∂t2 

Further, the sum Ψ (x,t) = φ1 (x,t) + φ2 (x,t) of left and right traveling waves is 

also a solution. 

Ψ (x,t) = A⎡⎣sin (kx −ωt) + sin (kx + ωt) ( )cos (ωt)⎤⎦ = 2 Asin kx

This is a stationary wave or standing wave. Its peaks and nulls remain stationary. 

At various times during a full cycle (2π/ω): 
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As in a vibrating violin string, the node positions are independent of time. Only 
the amplitude of the fixed waveform oscillates with time. 

More generally, we can write wave equation solutions in the form 

Ψ x,t) = ψ ( )cos (ωt)( x

In the particular case above, ψ x ( ) .( ) = 2 Asin kx
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For the general case, 
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Ψ (x,t) = −k 2Ψ (x,t) (ω k = v)= = 

Plugging in Ψ x,t) = ψ ( )cos (ωt)( x
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2But p ) = 2m ⎡⎣E − V x ⎤⎦ (assuming t-independent potential) = 2m(K.E.	 ( ) 

!2 ∂2ψ x
+ V x x x∴ − 
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time-independent Schrödinger equation in one dimension 

We now have the outline of: 

• a physical picture involving wave and particle duality of light and matter ! 

•	 a quantitative theory allowing calculations of stable states and their 
properties ! 




