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NUCLEAR MAGNETIC RESONANCE 
Just as IR spectroscopy is the simplest example of transitions being induced by light’s 

oscillating electric field, so NMR is the simplest example of transitions induced by the 
oscillating magnetic field. Because the strength of mattermagnetic field interactions are 
typically two orders of magnitude smaller than the corresponding electric field interactions, 
NMR is a much more delicate probe of molecular structure and properties. The NMR spin 
Hamiltonians and wavefunctions are particularly simple, and permit us to demonstrate several 
fundamental principles (about raising and lowering operators, energy levels, transition 

probabilities, etc.) with a minimal amount of algebra. The principles and procedures are 
applicable to other areas of spectroscopy  electronic, vibrational, rotational, etc. – but for 

these cases the algebra is more extensive. 

Nuclear Spins in a Static Magnetic Field 

For a single isolated spin in a static magnetic field, the contribution to the energy is: 

Ĥ = − m B ˆiˆ i = − γ I B 0 0 0 

where γ is called the gyromagnetic ratio. If we choose our z axis to point in the direction of 
E
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the magnetic field then: 

Ĥ = − m B ˆˆ = − γ I B 0 z 0 z 0 

If we assume the nuclear spin is ½ (As it is for a proton) then we can easily work out the 
energy levels of this Hamiltonian: 

1 1 �ωE± = ± 
2 
γ �B0 ≡ ± 

2 0 

where ω0 = γB0 is called the nuclear Larmor frequency (rad/sec). Now, nuclei are never 
isolated in chemistry – they are always surrounded by electrons. As we learned for the 
hydrogen atom, the electrons near the nucleus shield the outer electrons from the bare 

electric field produced by the nucleus. Similarly, the electrons shield the nucleus from the 
bare electric field we apply in the laboratory. More specifically, the electron circulation 
produces a field, B’ opposed to B0 and of 

magnitude equal to σ B0 where σ is a constant. 
bare nucleus with 

nucleus electrons Thus, the effective field, B, at the nucleus is 
B0 B0(1-σ)

B = (1 −σ )B0 

Note that σ is different for each chemically 
different nuclear spin – this is the famous 

hω
0 hω

0 (1 − σ )chemical shift – and permits resolution of lines in 

NMR spectra corresponding to chemically 
different sites. The Hamiltonian is modified 
accordingly 

ˆ ˆH = − m B ˆ (1 − σ ) = − γ I B (1 − σ )0 z 0 z 0 

Zero Field High Field 
Thus, instead of “seeing” a magnetic field of 
magnitude B0, a proton in a molecule will see a 
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magnetic field of magnitude (1-σ)B0 and the associated Hamiltonian and spin state energies 

will become: 
1 1E± = ± 
2 
γ �B0 (1− σ ) ≡ ± 

2 
�ω0 (1−σ ) 

This is illustrated in the figure above. Note the sign of the Hamiltonian is chosen so that the 

α state (spin parallel to B0) is lower in energy than the β state ( spin antiparallel to B0). 

Now, in the simplest NMR experiment, we probe this system with an oscillating magnetic field 
perpendicular to the static field. By convention, we take this field to be along the x axis: 

Ĥ1 (t ) = − ˆ i (t ) = − γ ˆi 1 (t ) γ ˆ 
x cos (ωm B 1 I B = − I B x t ) 

We use Fermi’s Golden Rule to describe the spectrum of the spin in the oscillating field. The 
selection rule is: 

2 22 

V = ∫φ * 
m B i 1φidτ = γ Bx i∫φ f 

* Î  
x φidτfi f 

Now, we recall that Î  
x can be written in terms of the raising and lowering operators for 

angular momentum: 
ˆ ˆ ˆI ∝ ( I + I )x + − 

So that: 
2 

* ˆ ˆV ∝ γ Bx i∫φ f ( I+ + I− )φidτ 
2 

fi 

We immediately see that the integral is nonzero only if the initial and final spin states 
differ by ±1 quantum of angular momentum (i.e. ΔM = ± 1 ) , because the operator must either 

raise or lower the eigenvalue of Î  
z 
. Thus, there are two possible transitions: α→β and β→α. 

Futher, the energy conservation rule tells us that these transitions will only occur when the 
photon energy matches the energy gap between the two states. As a result, we can 

This is perhaps not all that shocking: there is only one transition here, and so we might have 
guessed that the spectrum would involve the frequency of that transition. However, we note 

two generalizations of this result. First, we note that if we had chosen to apply the 
oscillating field parallel to the static field, we would not have generated any transitions; we 

immediately draw the spectrum of a single shielded spin: 

Intensity 

Frequency (ω)(1−σ)ωo 
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only changed the spin state because we could decompose the xoscillating field into raising 

and lowering operators. If the field was zoscillating, then we would have had 
22 

V ∝ γ Bx i∫φ f 

* Î  
z φidτfi 

which is only nonzero for the trivial α→α and β→β transitions. Second, we note that if the 

spin was bigger than ½ (e.g. a spin3/2 nucleus) then our selection rule above would be 
precisely the same. Thus, we would have allowed transitions − 

2
3 ↔ − 1

2 
, − 1

2 
↔ + 1

2 
and 

+ 1
2 

↔ + 3
2 
and all of these transitions would occur at the same frequency. Thus, spin3/2 

transitions like − 
2
3 ↔ + 1

2 
or − 

2
3 ↔ + 

2
3 are strictly forbidden. 

Now, as noted above, depending on their environment, different protons will be shielded 
differently, resulting in a spectrum that will look qualitatively like: 

Intensity 

Frequency (ω)(1−σ3)ωo (1−σ4)ωo(1−σ2)ωo(1−σ1)ωo 

We note that the transition moment above is independent of the chemical environment: it 
does not depend on shielding or any other property of the molecule. Thus, the area under an 

NMR peak is strictly proportional to the number of spins that have transitions at that 
frequency. This stands in contrast to IR spectroscopy, where the intensity of each oscillator 
depended on the character of the oscillator, the initial state …. 

Two Spins – J Couplings 
Now, we are not usually interested in two isolated spins. For two uncoupled spins with 

different chemical shifts ( σ1≠ σ2 ) in an external field we obtain a Hamiltonian of the form: 

Ĥ0 = − γ Î1z B0 (1 − σ1 ) − γ Î2 z B0 (1 − σ 2 ) 
Because this Hamiltonian is separable, we can immediately work out the energies: 

E 
↓↓ 

= E 
1↓

+ E 
2↓ 

= + 
ωο [(1 − σ

1
) + (1 − σ

2
)]

2 

E 
↓↑ 

= E 
1↓

+ E 
2↑ 

= + 
ωο [(1 − σ

1
) − (1 − σ

2
)]

2


E 
↑↓ 

= E 
1↑

+ E 
2↓ 

= − 
ωο [(1 − σ

1
) − (1 − σ

2
)]


2


E 
↑↑ 

= E 
1↑

+ E 
2↑ 

= − 
ωο [(1 − σ

1
) + (1 − σ

2
)]


2 
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where we have assumed for simplicity that σ1< σ2 so that E 
↓↑ 

> E 
↑↓ 
. Now, the selection rule is 

the of the same form as for a single spin, but Ix decomposes into a sum of Ix for spin 1 and an 

Ix for spin 2: 
22 

* ˆ ˆV = γ B
x 
i∫φ f 

* Î  
x 
φ

i
dτ = γ B

x 
i∫φ

f ( I1x 
+ I

2 x )φ
i
dτ 

2 

fi 

* ˆ ˆ ˆ ˆ∝ ∫φ f ( I1+ + I1− + I2+ + I2− )φidτ 
2 

The remaining integral is only nonzero if ΔM1 = ±1 or ΔM 2 = ±1 , because the operators must 

raise or lower the spin state of either spin 1 or spin 2 (but not both). If we wanted to change 

both spins, we would need an operator like Î
1+ Î2− , which would allow us to raise 1 while also 

lowering 2. Since we do not have any of these cross terms, we conclude only one or the other 

spin can flip in an allowed transition – any twospin transitions are forbidden. 

Combining these results for two uncoupled spins, we obtain the picture at left. We note that 

the ↑↑↔↓↓ and ↓↑↔↑↓ transitions are forbidden, since they require flipping both spins 
simultaneously. For the allowed transitions, we can easily work out 

the energies: 

E 
↓↓ 

− E 
↑↓ 

= + 
ωο [(1 − σ

1
) + (1 − σ

2
)] +

ωο [(1 − σ
1
) − (1 − σ

2
)] = ωο (1 − σ

1
) 

2 2 

E 
↓↑ 

− E 
↑↑ 

= + 
ωο [(1 − σ

1
) − (1 − σ

2
)] +

ωο [(1 − σ
1
) + (1 − σ

2
)] = ωο (1 − σ

1
) 

2 2 

E 
↓↓ 

− E 
↓↑ 

= + 
ωο [(1 − σ

1
) + (1 − σ

2
)] −

ωο [(1 − σ
1
) − (1 − σ

2
)] = ωο (1 − σ

2
) 

2 2 

E 
↑↓ 

− E 
↑↑ 

= − 
ωο [(1 − σ

1
) − (1 − σ

2
)] +

ωο [(1 − σ
1
) + (1 − σ

2
)] = ωο (1 − σ

2
) 

2 2 

So we have only two transition energies, corresponding to each of the isolated transitions, 

ΔΔΔΔM2=±1 

ΔΔΔΔM2=±1ΔΔΔΔM1=±1 

ΔΔΔΔM1=±1 

E↓↑ 

E↑↓ 

E↓↓ 

E↑↑ 

just as predicted above: 

Intensity 

Frequency (ω)(1−σ1)ωo(1−σ2)ωo 

Where we note that there are actually two degenerate transitions contributing to each line.




� 

� 
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We now permit the two spins to be coupled to one another in a simple way. We include a J

coupling of the spins: 
J 

2 
Î1z Î2z , where the factors of � are included so that J has units of 

energy. Thus, the Hamiltonian assumes the form 

Ĥ0 = − γ Î1z
B0 (1 − σ1 ) − γ Î2 z B0 (1 − σ 2 ) + 

J 
2 

Î1z Î2z 

Now, we can work out the eigenvalues of this new Hamiltonian quite easily because we know 

the eigenvalues of Î
1z 

and Î
2z 
. For example, for the ↓↓ state: 

Ĥ0φ↓↓ 
= ⎛⎜ −γ Î1z B0 (1 − σ1 ) − γ Î2 z B0 (1 − σ 2 ) + 

J 
2 

Î1z Î2z 

⎞
⎟φ

↓↓
⎝ � ⎠ 

⎛ J ⎛ −� ⎞ ⎛ −� ⎞⎞ = ⎜ E 
1↓ 

+ E 
2↓

+ 
2 ⎜ ⎟ ⎜ ⎟⎟φ

↓↓
⎝ � ⎝ 2 ⎠ ⎝ 2 ⎠⎠ 

= ⎜
⎛ 

E 
1↓ 

+E 
2↓

+ 
J 
⎟
⎞φ

↓↓

⎝ 4 ⎠


Similar algebra for the other states gives: 

⎛ J ⎛ � ⎞ ⎛ −� ⎞⎞ ⎛ J ⎞ 
Ĥ0φ↑↓ 

= ⎜ E 
1↑ 

+ E 
2↓

+ 
2 ⎜ ⎟ ⎜ ⎟⎟φ

↑↓ 
= ⎜ E 

1↑ 
+E 

1↓
− ⎟φ

↑↓
⎝ � ⎝ 2 ⎠ ⎝ 2 ⎠⎠ ⎝ 4 ⎠ 

⎛ J ⎛ −� ⎞ ⎛ � ⎞⎞ ⎛ J ⎞ 
Ĥ0φ↓↑ 

= ⎜ E 
1↓ 

+ E 
2↑

+ 
2 ⎜ ⎟ ⎜ ⎟⎟φ

↓↑ 
= ⎜ E 

1↓ 
+E 

2↑
− ⎟φ

↓↑
⎝ � ⎝ 2 ⎠ ⎝ 2 ⎠⎠ ⎝ 4 ⎠ 

⎛ J ⎛ � ⎞ ⎛ � ⎞⎞ ⎛ J ⎞ 
Ĥ0φ↑↑ 

= ⎜ E 
1↑ 

+ E 
2↑

+ 
2 ⎜ ⎟ ⎜ ⎟⎟φ

↑↑ 
= ⎜ E 

1↑ 
+E 

1↓
+ ⎟φ

↑↑
⎝ � ⎝ 2 ⎠ ⎝ 2 ⎠⎠ ⎝ 4 ⎠ 

Thus, in the presence of the coupling, our energy diagram changes: 

ΔΔΔΔM2=±1 

ΔΔΔΔM2=±1ΔΔΔΔM1=±1 

ΔΔΔΔM1=±1 

E↓↑ 

E↑↓ 

E↓↓ 

E↑↑ 

ΔΔΔΔM2=±1 

ΔΔΔΔM2=±1ΔΔΔΔM1=±1 

ΔΔΔΔM1=±1 

E↓↑ 

E↑↓ 

E↓↓ 

E↑↑ 

Uncoupled J Coupling 

Where we have noted that states where the spins are parallel shift upward in energy and 

those where the spins are antiparallel shift down, and we have exaggerated the magnitude of 
the shift for visual effect. Note that the selection rules do not change, because the states 
have not changed – only the energies are different with the coupling on. The energies of the 

allowed transitions are: 

− οE 
↓↓ 

− E 
↑↓ 

= + 
ωο 

⎢
⎡ 
(1 − σ

1
) + (1 − σ

2
) + 

J 
⎥
⎤ ω 

⎢
⎡−(1 − σ

1
) + (1 − σ

2
) − 

J 
⎥
⎤ = ωο (1 − σ

1
) + 

J 

2 ⎣ 4 ⎦ 2 ⎣ 4 ⎦ 2 
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E 
↓↑ 

− E 
↑↑ 

= + 
ωο 

⎢
⎡ 
(1 − σ

1
) − (1 − σ

2
) − 

J 
⎥
⎤ − 

ωο 
⎢
⎡−(1 − σ

1
) − (1 − σ

2
) + 

J 
⎥
⎤ = ωο (1 − σ

1
) − 

J 

2 ⎣ 4 ⎦ 2 ⎣ 4 ⎦ 2 

E 
↓↓ 

− E 
↓↑ 

= + 
ωο 

⎢
⎡ 
(1 − σ

1
) + (1 − σ

2
) + 

J 
⎥
⎤ − 

ωο 
⎢
⎡ 
(1 − σ

1
) − (1 − σ

2
) − 

J 
⎥
⎤ = ωο (1 − σ

2
) + 

J 

2 ⎣ 4 ⎦ 2 ⎣ 4 ⎦ 2 

ω ⎡ J ⎤ − 
ωο ⎡ J ⎤ J 

E 
↑↓ 

− E 
↑↑ 

= ο 
⎢−(1 − σ

1
) + (1 − σ

2
) − ⎥ ⎢−(1 − σ

1
) − (1 − σ

2
) + ⎥ = ωο (1 − σ

2
) − 

2 ⎣ 4 ⎦ 2 ⎣ 4 ⎦ 2 

Thus, whereas we had two doubly degenerate transitions in the absence of coupling, in the 

presence of coupling we have four distinct transitions: 

Intensity 

Frequency (ω)(1−σ1)ωo(1−σ2)ωo 

J J 

where here we have noted the physical fact that J is typically much smaller than the 

difference in chemical shielding σ between distinct protons. Thus, we see that the splitting 
of NMR peaks is mediated by the coupling between the nuclear spins. This coupling is 
typically mediated via the electrons – nucleus 1 pushes on the electrons, which are delocalized 

and in turn push on nucleus 2. While one can routinely compute these couplings via DFT or 
HF, it is much more common to use empirical rules to determine which protons will be coupled 
and how large we expect the coupling to be. We should note that the magnitude of the J
splitting is independent of the magnetic field strength. Meanwhile, the Larmor frequency 
increases with increasing B0. Thus, in a strong enough magnet, the peaks with shielding near σ1 

will be very far from those with shielding σ2. 

Spin Dynamics and Pulsed NMR 
One of the extremely appealing aspects of NMR is we can exactly work out virtually any 
property we’re interested in knowing. In particular, we can get a picture of the dynamics of 

the spin in an external magnetic field. This gives us a qualitative picture of what we are doing 
when we take an NMR spectrum and also serves as the basis for modern pulsed NMR 
experiments. Consider an arbitrary initial state written as a linear combination of the two 

spin states: 
ψ (t ) = cα (t )ψα + cβ (t )ψ β 

where we have noted that the time dependence of the state comes through the time 
dependence of the coefficients. We can write this in matrix mechanics: 
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ψ
� ( )t = ⎜

⎛ cα (t ) 
⎟
⎞ 

⎜ cβ ( )t ⎟⎝ ⎠ 
We can also write the timedependent Schrödinger equation in Matrix mechanics: 

i ψ t = ˆ t 
⎛ c 

�

�α (t ) ⎞ 
= 
⎛
⎜⎜ 

Hαα Hαβ ⎞

⎟ 
⎛
⎜⎜

cα (t ) ⎞ 
� � ( ) Hψ ( ) ⇒ i� 

⎝
⎜⎜

β ( )t 
⎟⎟ Hβα Hββ 

⎟
⎝ c ( )⎟⎟c ⎠ ⎝ ⎠ β t ⎠ 

Now, for a spin in a static field, we know the Hamiltonian 

⎛ −�ω� 0 ⎞ 
⎜ 0 ⎟ 

Ĥ = − ω (1 − σ ) Î  ≡ − ω� Î  ⇒ H = − ω� I = ⎜ 2 
⎟0 z 0 z 0 z 

⎜ �ω� 
0 ⎟

⎜ 0 ⎟
⎝ 2 ⎠ 

Thus, the TDSE becomes: 

⎛ −�ω� 0 ⎞ 
⎛ c�α ( ) ⎜ 0 ⎟ ⎛ c ( )t ⎞ 2 α t ⎞ 

i� ⎜ ⎟⎜ ⎟ = ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ c�β ( )t ⎠ ⎜ −�ω� 

0 ⎟ ⎝ cβ ( )t ⎠⎜ 0 ⎟
⎝ 2 ⎠ 

Which reduces to two independent differential equations for the coefficients: 

0 0i�c�α ( )t =
−�ω� 

cα ( )t i�c�β ( )t =
+�ω� 

cβ ( )t 
2 2 

These equations can easily be integrated to yield: 
+iω�0t −iω�0t 

c t = e 2 c 0 c t = e 2 c 0α ( ) α ( ) β ( ) β ( ) 
where we will assume for simplicity that the initial values, cα (0) , cβ (0) are real. Thus, the 

magnitude of each coefficient is constant with time; we only acquire a phase factor for each 
coefficient. However, these coefficients completely describe the time evolution of an 

arbitrary spin state in the static magnetic field. 

Now that we have solved for the coefficients of the time dependent wavefunction, let’s look 

at some interesting properties of the system. First, let’s compute the zcomponent of the 
spin: 

⎛ � ⎞ 
2 

Î  ( ) = (c ( ) * c ⎜ ⎟⎟ = 
⎢⎣ 

cα ( )t − c ( )t 
2 

⎦
⎤ = 
� 
⎢
⎡ 

α 0
2 

t t ( )t *) 
⎜ 2

0 

⎟
⎟ 
⎜⎜
⎛ cα ( )t ⎞ � ⎡ 

⎥ ⎣ 
c ( ) − c ( )0

2 ⎤
⎦⎥z α β β β

2⎜ � ⎟ ⎝ cβ ( )t ⎠ 2 
⎜ 0 − ⎟
⎝ 2 ⎠ 

Thus, the zcomponent of the spin does not change with time! This is perhaps a bit 

surprising. We continue to compute the x and y components: 

⎛ � ⎞ 
⎜ 0 2 ⎟ ⎛ cα ( )t ⎞ � 

Î  t = c t * c t * = ⎡c t * c t + c t * c t ⎤( ) ( α ( ) β ( ) ) 
⎜
⎜ 
� ⎟

⎟ 
⎝
⎜⎜cβ ( )t ⎠

⎟⎟ 2 ⎣ α ( ) β ( ) β ( ) α ( )⎦x 

⎜ 0 ⎟
⎝ 2 ⎠ 

= 
� 

c ( ) cβ ( )0 ⎡⎣e 
−iω�0t + e 

+iω�0t 

⎦ = �c 0 cβ ( )0 cosω tα 0 ⎤ α ( ) � 
0

2 



� 
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⎛ −i� ⎞ 
⎜ 0 2 ⎟ ⎛ cα ( )⎞ �t −i 

Î  t = c t * cβ t * ⎜ = ⎡c t * c t − c t * cα t ⎤( ) ( α ( ) ( ) ) 
i� 

⎟ ⎜⎜c ( )t 
⎟⎟ 2 ⎣ α ( ) β ( ) β ( ) ( )⎦y 

⎜ 0 ⎟ ⎝ β ⎠⎜ ⎟
⎝ 2 ⎠ 

= c 0 c 0 ⎡e − e ⎤ = −�c 0 c 0 sin ω� t 
−i� 

α ( ) β ( ) ⎣ 
−iω�0t +iω�0t 

⎦ α ( ) β ( ) 0
2 

Thus, the x and y components oscillate with time at the shielded Larmor frequency ω� 
0
. It is 

convenient to define a magnetization vector that contains these three expectation values: 
ˆM 

� 
( )t ≡ ( I t( ) Î  ( )t Î  ( )t )x y z 

It is fairly easy to see that the magnetization is precessing about the magnetic field: the 
projection onto the magnetic field axis is constant, while the perpendicular motion is tracing 
out a circular path. This is precisely the behavior one would expect from a classical magnetic 

moment in a magnetic field. In this case, the magnetic field would exert a torque on the 
magnetic moment according to: 

eff
dM 
� 

(t )
= M 
� 

( )t ×γ B 
� 

dt 

where we note that the magnetic moment feels the shielded magnetic field Beff . This gives us 
three differential equations for the components of the magnetization, called Bloch 
Equations: 

dM 
x (t )

γ ⎡⎣My ( ) Beff − M
z ( ) Beff ⎤⎦ = γ M

y
t 

eff= t
z 

t
y ( ) Bz

dt 

dM 
y (t ) 

⎡ t t ⎤ ( ) Beff eff eff= − γ ⎣Mx ( ) Bz 
− M

z ( ) Bx ⎦ = − γ M
x

t 
z

dt 

dM 

dt 

z (t ) 
⎣ x ( ) y

eff 

y ( ) x

eff 

⎦ = γ ⎡M t B − M t B ⎤ = 0 

Where we have noted that only the zcomponent of the magnetic field is nonzero. Further, 

it is easy to see by substitution that our quantum mechanical predictions for Î  
x (t ) and 

Î  (t ) satisfy the equations above for M
x (t ) and M

y (t ) , respectively (try it and see). Thus,
y 

we find that the quantum evolution of the average spin exactly follows the classical 

equations of motion! We find comfort in this conclusion, because it is usually much easier to 
think in terms of classical properties whenever possible, giving us a very nice semiclassical 
way of interpreting NMR. 

This rather surprising result turns out to be true for a single spin evolving in an arbitrary 
time depenedent magnetic field Beff

(t). To prove this, we have to use Ehrenfest’s theorem, 
which states that for an arbitrary operator O, the time dependent average value of O 

satisfies 
d 

⎡ ˆ , ˆ ⎤ tÔ ( )t = 
i 
⎣H O⎦ ( )

dt 



� 

� 
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We proved a shortened version of this on one of the Problem Sets. Applying Ehrenfests 

theorem to the three operators Î  
x 
, Î  

y 
, Î  

z 
in an arbitrary magnetic field Beff

(t) gives equations 

of motion that are exactly the same as the classical equations for M (t ) . Thus, one can prove 

quite rigorously that the classical picture is exactly right for describing spin dynamics in a 

magnetic field. 

What does this gain us? Well, with this result in hand it is relatively easy to derive the 

correct differential equations for our favorite time dependent magnetic field: 
eff eff 

B (t ) = − B − B cos (ωt )z x 

This is the magnetic field we apply in an NMR experiment and being able to visualize the 
dynamics will help us understand how the experiment works. It is relatively straightforward 
to work out the associated Bloch Equations for this magnetic field. They are: 

dM t 
x ( )

= γ M ( ) t B
eff 

dt 
y z 

dM 
y (t ) 

= − γ ⎡⎣Mx ( ) z

eff + M
z ( ) Bx )⎦t B t cos (ωt ⎤ 

dt 

z 
dM 

dt 

(t ) 
= − γ M

y ( ) t B
x 

cos (ωt ) 

These equations can actually be solved analytically to obtain the magnetization as a function 
of time. From these equations we obtain the picture below: 

ω � ω ω = ω
0 

ω � ω
00 

Here, we are plotting the magnetization as a function of time for various choices of the 
frequency of the oscillating magnetic field component. If our field oscillates too quickly 
(first case) then the magnetization just sees the average field and noting interesting 

happens – we just get precession about the average field. If the oscillating field is too slow, 
the magnetization oscillates around the instantaneous field and we get a sort of hulahoop 
motion of the magnetization. However, if we hit the frequency just right (middle) we can get 

the magnetization to invert – to go from “up” to “down”. Thus, we see that the absorption 
condition in NMR is associated with flipping the magnetization of the system. 

Now, we note that at resonance, with the field on continuously, the spin will actually flip from 
“up” to “down” and back to “up” and back to “down”… as a function of time. It is this 
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oscillation that shows up in our NMR spectrum. However, it is possible to turn the 

oscillating field on and off as a function of time. Thus, for example, if we kept the field on 
for exactly π/ω0 then the system would only have time to flip one time – all the up spins would 
be converted to down and vice versa. Such a pulsed magnetic field is called an inversion 

pulse, for obvious reasons. Meanwhile, if we kept the field on for exactly π/2ω0 we could 
drive all the magnetization into the xy plane. This is called a π/2 pulse. Further, we note 

these pulses only work if we are on resonance with a particular proton’s Larmor frequency; 
from the above figure it is clear that if we are off resonance, we can’t get the spins to flip. 
Thus, one can imagine fairly complex sequences of inversion pulses and π/2 pulses applied at 

various frequencies being used to isolate different couplings within a complicated molecule 
(like a protein). Thus, it should not be surprising that cutting edge NMR experiments are all 
timeresolved in order to extract the maximum information from the molecule. 


