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VIBRATIONAL SPECTROSCOPY 
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As we’ve emphasized many times in this course, within the Born

Oppenheimer approximation, 
the nuclei move on a potential 
energy surface (PES) 

determined by the electrons. 
For example, the potential 
felt by the nuclei in a 

diatomic molecule is shown in 
cartoon form at right. At low 
energies, the molecule will sit 

near the bottom of this 
potential energy surface. In 

equilibrium bond length this case, no matter what the 

detailed structure of the potential is, locally the nuclei will “feel” a nearly 
harmonic potential. Generally, the motion of the nuclei along the PES is 
called vibrational motion, and clearly at low energies a good model for the 

nuclear motion is a Harmonic oscillator. 

Simple Example: Vibrational Spectroscopy of a Diatomic 
If we just have a diatomic molecule, there is only one degree of freedom 
(the bond length), and so it is reasonable to model diatomic vibrations using a 

1D harmonic oscillator: 
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where ko is a force constant that measures how stiff the bond is and can be 
approximately related to the second derivative to the true (anharmonic) PES 

near equilibrium: 
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Applying Fermi’s Golden Rule, we find that when we irradiate the molecule, 
the probability of a transition between the ith and fth Harmonic oscialltor 

states is: 
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where ω is the frequency of the light (not to be confused with the 
frequency of the oscillator, ωo). Because the vibrational eigenstates involve 
spatial degrees of freedom and not spin, we immediately recognize that it is 

the electric field (and not magnetic) that is important here. Thus, we can 
write the transition matrix element as: 
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Now, we define the component of the electric field, ER, that is along the 

bond axis which gives 
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So the rate of transitions is proportional to the square of the strength of 
the electric field (first two terms) as well as the square of the transition 

dipole matrix element (third term). Now, because of what we know about 
the Harmonic oscillator eigenfunctions, we can simplify this. First, we re
write the position operator, R, in terms of raising and lowering operators: 
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where above it should be clarified that in this expression “i" never refers to 
√1 – it always refers to the initial quantum number of the system. Thus, we 

immediately see that a transition will be forbidden unless the initial and 
final states differ by one quantum of excitation. Further, we see that 
the transitions become more probable for more highly excited states. That 

is, Vfi gets bigger as i gets bigger. 

Combining the explicit expression for the transition matrix element with 

Fermi’s Golden Rule again gives: 
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Thus, we see that a harmonic oscillator will only absorb or emit photons 
of frequency �ω 

o 
, where ωo is the frequency of the oscillator. Thus, if 

we look at the absorption spectrum, for example, we will see absorption at 
only one frequency: 

ωo Light Frequency (ω) 

( ) }o 
δ ω ω ⎤+ ⎦� � 

0 

Absorption 
Intensity 

Molecular force constants are typically on the order of an eV per Å, which 
leads to vibrational frequencies that are typically 
between 5003500 cm1 and places these absorption 

features in the infrared. As a result, this form of 
spectroscopy is traditionally called IR spectroscopy. We 
associate the spectrum above as arising from all the 

n→n+1 transitions in the Harmonic oscillator (see left). 
Of course, most of the time the molecule will start in its 

ground state, so that the major contribution comes from the 0→1 transition. 

However, the other transitions occur at the same frequency and also 
contribute to the absorption. 

This is the classic paradigm for IR vibrational spectroscopy: each diatomic 
molecule absorbs radiation only at one frequency that is characteristic of 

the curvature of the PES near its minimum. Thus, in a collection of 
different molecules one expects to be able differentiate one from the other 
by looking for the frequency appropriate to each one. In particular there is 
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a nice correlation between the “strength” of the bond and the frequency at 
which it will absorb. 

Of course, we are not always or even usually interested in diatomics, and 
even diatomics are not perfect Harmonic oscillators. Thus, there are a 
number of reasons why IR absorption spectra do not really look like the 

classic Harmonic oscillator spectrum shown above, but more like: 

Heterogeneity 
The primary reason the real spectrum above looks different than the model 

is because the real spectrum was taken in solution. The model is correct for 
a single diatomic, or for many, many copies of identical diatomic molecules. 
However, in solution, ever molecule is just slightly different, because every 

molecule has a slightly different arrangement of solvent molecules around it. 
These solvent molecules subtly change the PES, slightly shifting the 
vibrational frequency of each molecule and also modifying the transition 

dipole a bit. Thus, while a single hydrogen fluoride molecule might have a 
spectrum like the model above, a solution with many HF molecules would look 
something like: 
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ωo Light Frequency (ω) 

Going over to the situation where there are 1023 HF molecules and 

recognizing that our spectra will tend to add the intensity of lines that are 
closer together than our spectrometer can differentiate, we anticipate that 

for a diatomic molecule in solution, the vibrational spectrum should look 
something like: 

Absorption 
Intensity 

ωo Light Frequency (ω) 

Absorption 
Intensity 

The resulting feature in the spectrum is usually called a lineshape. It 

primarily reflects the distribution of different environments surrounding 
your oscillators. Thus, by analyzing the lineshape of a wellknown type of 
vibration (such as a C=O stretch) one can get an idea about the environments 

those CO groups live in: How polar are the surroundings? Are they near 
electron withdrawing groups? What conformations give rise to the 
spectrum? Finally, we should note that vibrational spectra recorded in the 

gas phase have very narrow linewidths, qualitatively resembling our model 
above. 

Anharmonicity 
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Another reason real spectra differ from our model is that assuming the PES 
is harmonic is only a model. If we want high accuracy, we need to account 
for anharmonic terms in the potential: 

V (R) = 
1 2 2 1 3 1 4 

2 
mω 

o (R − R0 ) + 
6 

α (R − R0 ) + 
24 

β (R − R0 ) + ... 

One can investigate the quantitative effects of the anharmonic terms on the 
spectrum by performing variational calculations. However, at a basic level 

there are two ways that anharmonic terms impact vibrational spectra: 
1) The energy differences between adjacent states are no longer 

constant. Clearly, the eigenvalues of an anharmonic Hamiltonian 

will not be equally spaced – this was a special feature of the 
Harmonic system. Thus, for a real system we should expect the 
0→1 transition to have a slightly different frequency than 1→2, 

which in turn will be different that 2→3 …. Generally, the higher 
transitions have lower (i.e. redshifted) energies because of the 

shape of the molecular PES – rather than tend toward infinity at 
large distances as the harmonic potential does, a molecular PES 
tends toward a constant dissociation limit. Thus, the higher 

eigenstates are lower in energy than they would be for the 
corresponding harmonic potential. Taking this information, we 
would then expect a single anharmonic oscillator to have a 

spectrum something like: 

Absorption 

Intensity 

Light Frequency (ω)ωo 

0→1 

1→2 

2→3 

where we note that while the rate of, say, 1→2 is about twice that 
of 0→1 (because the transition dipole is twice as big) the intensity 
of 0→1 is greater because the intensity is (Probability of i being 
occupied)x(Rate of i→f) and at room temperature the system 
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spends most of its time in the ground vibrational state. The 1→2, 
2→3 … lines in the spectrum are called hot bands. 

2) Anharmonicity relaxes the Δn=±1 selection rule. Note that the 

rules we arrived at were based on the fact that â
+φ

i 
∝ φ

i+1 . This is 

only true for the Harmonic oscillator states. For anharmonic 
eigenstates â

+φ ∝ φ + ε φ + ..... . Thus transitions with Δn=±2,±3… 
i i+1 1 i+2 

will no longer be forbidden for anharmonic oscillators. Rather, in 

the presence of a bit of anharmonicity, they will be weakly allowed. 
Combining this observation with point 1) above results in a more 
complete picture for what the IR spectrum of an anharmonic 

oscillator should look like: 

Absorption 
Intensity 

Light Frequency (ω)ωo 

0→1 

1→2 

2→3 

2ωo 

0→2 

1→3 

2→4 

The peaks at around 2ωo are called overtones. Meanwhile, those at 
around ωo are called fundamentals. 

Polyatomic Molecules 

The final difference between the model above and a general IR spectrum is 
that in chemistry, we are not always dealing with diatomic molecules. For a 
polyatomic molecule, we can still think of the potential as a Harmonic 

potential, but it has to be manydimensional – it has to depend on several 
variables R1, R2, R3, …. The most general Harmonic potential we can come up 
with is then of the form: 

k R + k R R + k R R + .... + k R R + k R + k R R + .... V (R1 , R2 , R3 ,... ) = 1
2 11 1

2 1
2 12 1 2 

1
2 13 1 3 

1
2 21 2 1 

1
2 22 2

2 1
2 23 2 3 

+ 1 k R R + 1 k R R + 1 2
k R + ... 2 31 3 1 2 32 3 2 2 33 3 

where it is important to notice the cross terms involving, say R1 and R2, 
which couple the different vibrations. At first sight, it seems like we 
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can’t solve this Hamiltonian; the only manydimensional Harmonic potential 
we would know how to solve would be one that is separable: 

V� ( R1 , R2 , R3 ,... ) = 1
2 k11 R1

2 + 1
2 k22 R2

2 + 1
2 k33 R3

2 + ... 

If the Harmonic potential were of this form, we would be able to write down 

the eigenstates as products of the 1D eigenstates and get the energies as 
sums of the 1D eigenenergies. As it turns out, by changing coordinates we 

can turn a quadratic system with offdiagonal cross terms (like the first 
potential) into one with no cross terms (like the second). These new 
coordinates, in terms of which the Hamiltonian separates, are called normal 

modes and they allow us to reduce a polyatomic molecule to a collection of 
independent 1D oscillators. 

First, we note that V can be rewritten concisely in matrix notation [Note: it 
may be useful to consult McQuarrie’s supplement on Matrix Eigenvalue 
problems if the following seems unfamiliar.]: 

V ( R1 , R2 , R3 ,... ) = 1
2 R

T 
iK Ri 

⎛ R1 ⎞ ⎛ k11 k12 k13 ... ⎞ 
⎜ ⎟ ⎜ ⎟ 
⎜ R2 ⎟	 ⎜ k21 k22 k23 ... ⎟R ≡	 K ≡
⎜ R3 

⎟ ⎜ k31 k23 k33 ... ⎟ 
⎜ ⎟ ⎜ ⎟ 
⎝ � ⎠	 ⎝ � � � �⎠ 

Now, the Hamiltonian is of the form: 

T
Ĥ = ∑ 

P̂ 
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i 2µ
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It is convenient to first transform to mass-weighted coordinates: 

P̂ ij 
p̂i ≡	 i x̂i ≡ µi R̂ 

i k� ij ≡ 
k 

µ µ µ i	 i j 

in terms of which we can write the Hamiltonian: 

Ĥ = ∑ 
p̂ 

i 

2 

+ 
1

ˆT 
i � i ˆx K x 

i 2 2 

As is clear from the kinetic energy above, in these coordinates, every 
degree of freedom has the same reduced mass. 

Now we perform the normal mode transformation. We want to write: 
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⎛ k11 
' 0 0 ... ⎞ 

⎜ ' ⎟ 
x̂

T 
i � i ˆ = y T 

iK ′ ⎜ 0 k22 0 ... ⎟K x ˆ iy K ′ = 
'⎜ 0 0 k33 ... ⎟ 

⎜ ⎟⎜ ⎟ ... ... ... ... ⎝ ⎠ 
Further, we will assume there is a matrix U that transforms from x to y 

y = U x i ⇒ y T = x T 
iUT 

where in the second equality, we recall the general rule that the transpose 
of a product is the product of the transposes, but in the opposite order. 
Combining these two equations: 

iK x � ˆ x ′ i ˆx̂
T 
i ˆ = y T 

iK ′iy = ˆT 
iU

T 
iK iU x 

⇒ K� = UT 
iK ′iU 

The last equation is a common problem encountered in linear algebra: the 
quest to take a given matrix ( K� ) and place it in diagonal form (the right 
hand side). For a symmetric matrix like K� the solution to this problem is 

well known: the diagonal entries of K ′ are the eigenvalues of K� and the 
columns of the transformation matrix U are the eigenvectors of K� . The 
transformed variables y are called the normal modes. These modes are 

linear combinations of the local degrees of freedom R1, R2, R3, … that we 

started out with. Thus, while the initial motions might correspond clearly to 
local stretching of one bond or bending of an angle, the normal modes will 
generally be complicated mixtures of different molecular motions. We can 

visualize this in the simple case of two degrees of freedom. The local modes 
R1, R2 can be thought of as the two orthogonal axes in a plane. Meanwhile, 
the normal modes y1, y2 are also orthogonal axes, but rotated from the 

original set: 

R1 

R2 

R1 

R2 

y2 

y1 

Local modes 
Normal modes 

The local modes have interactions between each other: local stretches are 

coupled to local bends, etc. As a result, the Hamiltonian is not separable in 
terms of the local modes R1, R2. However, by design the Hamiltonian is 
separable when written in terms of the normal modes: 
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Ĥ = ∑ 
p̂ 

i 

2 

+ 
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k
ii 
′ ŷ

i 

2 

i 2 2 
’ The eigenvalues, kii , tell us the “stiffness” of the PES in the particular 

direction yi. Note that the Hamiltonian above is exactly the same 
Hamiltonian as the one we started with. The coupling terms have simply 
been rotated away by changing the coordinates. As discussed before, we can 

immediately interpret the spectra of this Hamiltonian in terms of a sum of 
many independent oscillators. Thus, for a polyatomic molecule within the 
harmonic approximation we expect to see lines at each of the normal mode 

frequencies: 

Absorption 
Intensity 

Light Frequency (ω)ω3 ω5ω1 ω2 ω4 

Where we have noted that the different oscillators will typically also have 
different transition dipoles. (For obvious reasons, in vibrational 

spectroscopy the square of the transition dipole is often called the 
oscillator strength) We can, of course, combine this polyatomic picture with 
the anharmonicity effects above to get a more general picture that looks 

like: 

2ω1 2ω2 
ω5-ω1 ω2+ω3 

ω1 ω2 ω3 ω4 ω5 Light Frequency (ω) 

Absorption 
Intensity 
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where we predict the existence of various hotbands and overtones for each 
of the normal mode oscillators in the molecule. Note that while the 
overtones always involve multiple quanta, the quanta need not come from the 

same normal mode – hence we expect not only overtones at 2ω1 , but also a 

combination bands at ω2 + ω3 and ω5 − ω1 . The picture above is qualitatively 

correct for the IR spectrum of a single molecule. In solution, heterogeneity 
leads to a smearing out and broadening of the peaks, leading to the complex 

IR fingerprints we are used to. 

As should be clear from the above discussion, IR spectra contain a wealth of 

information about the molecule: the stiffness of each normal mode, the 
degree of anhormonic effects, the character of the local environment felt 

by the oscillators …. Of course, in order to extract this information, one 
must be able to assign the spectrum – i.e. one must be able to distinguish 
hotbands from overtones and associate the various normal modes (at least 

qualitatively) with physical motions of the molecule. This task can be 
extremely challenging – and computation must be used as a guide in many 
cases – but when it is accomplished, one typically has a very sensitive 

fingerprint of molecule under consideration. 


