
5.61 Physical Chemistry Lecture #34
 1 

SPECTROSCOPY: PROBING MOLECULES WITH LIGHT 
In practice, even for systems that are very complex and poorly 

characterized, we would like to be able to probe molecules and find out as 
much about the system as we can so that we can understand reactivity, 
structure, bonding, etc. One of the most powerful tools for interrogating 

molecules is spectroscopy. Here, we tickle the system with electromagnetic 
radiation (i.e. light) and see how the molecules respond. The motivation for 
this is that different molecules respond to light in different ways. Thus, if 

we are creative in the ways that we probe the system with light, we can hope 
to find a unique spectral fingerprint that will differentiate one molecule 
from all other possibilities. Thus, in order to understand how spectroscopy 

works, we need to answer the question: how do electromagnetic waves 
interact with matter? 

The Dipole Approximation 
An electromagnetic wave of wavelength λ, produces an electric field, E(r,t), 
and a magnetic field, B(r,t), of the form: 

E(r,t)=E0 cos(k·r – ωt) B(r,t)=B0 cos(k·r – ωt) 

Where ω=2πν is the angular frequency of the wave, the wavevector k has a 

magnitude 2π/λ and k (the direction the wave propagates) is perpendicular to 
E0 and B0. Further, the electric and magnetic fields are related: 

E0· B0=0 |E0|=c|B0| 

Thus, the electric and magnetic 
fields are orthogonal and the 
magnetic field is a factor of c (the 

speed of light, which is 1/137 in 
atomic units) smaller than the 
electric field. Thus we obtain a 

picture like the one at right, where 
the electric and magnetic fields 

oscillate transverse to the 
direction of propagation. 

Now, in chemistry we typically deal with the part of the spectrum from 
ultraviolet (λ≈100 nm) to radio waves (λ≈10 m)1. Meanwhile, a typical molecule 

There are a few examples of spectroscopic measurements in the XRay region. In these 

cases, the wavelength can be very small and the dipole approximation is not valid. 
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is about 1 nm in size. Let us assume that the molecule is sitting at the origin. 
Then, in the 1 nm3 volume occupied by the molecule we have: 

k·r ≈ |k| |r| ≈ 2p/(100 nm)  1 nm = .06 

Where we have assumed UV radiation (longer wavelengths would lead to even 
smaller values for k·r). Thus, k·r is a small number and we can expand the 
electric and magnetic fields in a power series in k·r: 

E(r,t)≈E0 [cos(k·0-ωt)+O(k·r)]≈E0 cos(ωt)


B(r,t)≈B0 [cos(k·0-ωt)+O(k·r)]≈B0 cos(ωt)


Where we are neglecting terms of order at most a few percent. Thus, in 
most chemical situations, we can think of light as applying two time 
dependent fields: an oscillating, uniform electric field (top) and a 

uniform, oscillating magnetic field (bottom). This approximation is called 
the Dipole approximation – specifically when applied to the electric 
(magnetic) field it is called the electric (magnetic) dipole approximation. If 

we were to retain the next term in the expansion, we would have what is 
called the quadrupole approximation. The only time it is advisable to go to 
higher orders in the expansion is if the dipole contribution is exactly zero as 

happens, for example, due to symmetry in some cases. In this situation, even 
though the quadrupole contributions may be small, they are certainly large 

compared to zero and would need to be computed. 

The Interaction Hamiltonian 
How do these oscillating electric and magnetic fields couple to the molecule? 

Well, for a system interacting with a uniform electric field E(t) the 
interaction energy is 

ˆ ˆ ˆiH
E (t ) = − µµµµiE (t ) = −e r E (t ) 

where µµµµ is the electric dipole moment of the system. Thus, uniform electric 

fields interact with molecular dipole moments. 

Similarly, the magnetic field couples to the magnetic dipole moment, m. 

Magnetic moments arise from circulating currents and are therefore 
proportional to angular momentum – larger angular momentum means higher 
circulating currents and larger magnetic moments. If we assume that all the 

angular momentum in our system comes from the intrinsic spin angular 
momentum, I=(Ix , Iy ,Iz), then the magnetic moment is strictly proportional to 

I. For example, for a particle with charge q and mass m then 

ˆ q g ˆH
B ( )t = −m Bˆ i ( )t = − I B ( )ti 

2m 
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where g is a phenomenological factor (creatively called the “gfactor”) that 
takes into account the internal structure of the particle containing the 
intrinsic spin – for an electron ge=2.0023, while for a proton gp=5.5857. 

So now suppose that we have a molecule we are interested in, and it has a 

Hamiltonian, Ĥ
0 
, when the field is off. Then, when the field is on, the 

Hamiltonian will be 

Ĥ (t ) = Ĥ + Ĥ (t ) + Ĥ (t )0 E B 

Actually, in most cases, the simultaneous effects of electric and magnetic 
fields are not important and we will consider one or the other: 

Ĥ (t ) ≡ Ĥ + Ĥ (t ) Ĥ (t ) ≡ Ĥ (t ) or Ĥ (t ) .0 1 1 E B 

Thus, in the presence of light, a molecule feels a timedependent 

Hamiltonian. This situation is quite different with what we have discussed 
so far. Previously, our Hamiltonian has been time independent and our job 

has simply reduced to finding the eigenstates of Ĥ . Now, we have a 
Hamiltonian that varies with time, meaning that the energy eigenvalues and 

eigenstates of Ĥ also change with time. What can we say that is meaningful 
about a system that is constantly changing? 

Time Dependent Eigenstates 

As it turns out, the best way to think about this problem is to think about 

the eigenstates of Ĥ
0 
. When the field is off, each of these eigenstates 

evolves by just getting a phase factor: 
iE t �

Ĥ φ 
n (t ) = E φ 

n (t ) ⇒ φ (t ) = e 
− n / φ 

n (0)0 n n 

Thus, things like the probability density do not change because multiplying 
by the complex conjugate wipes out the phase factor: 

φ 
n ( ) t 

2 

= {e 
−iE t /�φ 

n ( ) 0 } * e 
−iE t /�φ 

n ( ) 0 =e
iE t /�φ 

n ( ) 0 * e 
−iE t /�φ 

n ( ) 0 = φ 
n ( ) 

2 
n n n n 0 

Thus, when considering measurable quantities (which always involve complex 
conjugates) the eigenstates of the Hamiltonian appear not to change with 
time. However, when the field is on the eigenstates will change with 

time. In particular, we will be interested in the rate at which the field 
induces transitions between an initial eigenstate φi and a final state φf. 
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To work out these rates, we first work out the time dependence of some 
arbitrary state, ψ(t). We can expand ψ(t) as a linear combination of the 
eigenstates: 

ψ (t ) = ∑c (t )φ (t )n n 

n 

where cn(t) are the coefficients to be determined. Next, we plug this into 
the TDSE: 

i�ψ� (t ) = Ĥψ (t ) 

⇒ i� 
∂ 
∑c

n ( ) t φ 
n ( ) t = Ĥ ∑c

n ( ) t φ 
n ( ) t 

∂t n n 

⇒ i�∑c� 
n ( ) t φ 

n ( ) t + c
n ( ) t φ� 

n ( ) t = ∑c
n ( ) t (Ĥ

0 
+ Ĥ

1 ( ) t )φ 
n ( ) t 

n n 

⇒ i�∑c� 
n ( ) t φ 

n ( ) t − 
iE 

n c
n ( ) t φ 

n ( ) t = ∑c
n ( ) t (E

n 
+ Ĥ

1 ( ) t )φ 
n ( ) t 

n � n 

⇒ i�∑c� 
n ( ) t φ 

n ( ) t + 
n 

n 

E c ∑ n ( ) t φ 
n ( ) t = ∑c

n ( ) t (E
n 

+ Ĥ
1 ( ) t )φ (t )n 

n n 

⇒ i�∑c� ( ) t φ ( ) t = ∑c ( ) t Ĥ ( ) t φ 
n ( ) t 

n n n 1


n n


Next, we multiply both sides by the final state we are interested in (φf*) and 

then integrate over all space. On the left hand side, we get: 

i�∫φ f 

* (t ) ∑c� 
n (t )φ 

n (t ) dτ = i�∑c� 
n (t )∫ n (t ) dτ = i�c� 

f (t ) 
n n 

δnf 

Meanwhile, on the right we get: 

t t H ˆ φ t c φ t t dτ∫φ f 

* ( ) ∑c
n ( ) 1 (t ) n ( ) dτ = ∑ n (t )∫ f 

* ( ) Ĥ1 ( )φ 
n (t ) 

n n 

Combining terms gives: 

⇒ i�c� (t ) = ∑∫φ * (t ) Ĥ (t )φ (t ) dτ c (t ) Eq. 1f f 1 n n 

n 

Up to this point, we haven’t used the form of H1 at all. We note that we can 

rewrite the lightmatter interaction as: 

Ĥ
1 (t ) = V̂ cos (ωt ) 

where, for electric fields V̂ ˆi 
0 

and for magnetic fields ˆ ≡ − 
q g ˆi .≡ −er E V I B
2m 

In either case, we can rewrite the cosine in terms of complex exponentials: 

( )* 

f 
tφ φ 
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Ĥ (t ) = V̂ 1 (eiωt + e −iωt )1 2 

Plugging this into Eq.1 above gives: 

i�c� 
f (t ) = ∑∫φ f 

* (t ) 12 
V̂ (e

iωt + e 
−iωt )φ 

n (t ) dτ c
n (t ) 

n 

= ∑∫φ f 

* ( ) 0 e
iE t /� 

2 
V̂ (e

iωt + e 
−iωt ) e 

−iE t /�φ 
n 

0 dτ c
n 

tf 1 n ( ) ( ) 
n 

= ∑∫φ * ( ) 0 1
2 
V̂φ ( ) 0 dτ (e 

( n −E f −�ω ) / � 
+ e 

−i E n −E f +�ω ) / ) c ( ) t 
−i E t ( t � 

f n n 

n 

= ∑ 2 
V

fn (e 
( −E −�ω ) / � 

+ e 
−i E −E +�ω ) / ) cn ( ) t 

−i E t ( t �1 n f n f 

n 

Tickling the Molecule With Light 
To this point we haven’t made any approximations to the time evolution. We 
now make some assumptions that allow us to focus on one particular i→f 

transition. We make two physical assumptions: 
1) The molecule starts in a particular eigenstate, φi, at t=0. This sets 

the initial conditions for our coefficients: only the coefficient of 
state i can be nonzero initially: 

c (0) = 0 if n ≠ i c (0) = 1 
n i 

It is easy to verify that this choice gives the desired initial state: 
ψ (0) = ∑c (0)φ (0) = 0 + 0 + ...1 iφ (0) + 0.... = φ (0)n n i i 

n 

2) The interaction only has a small effect on the dynamics. This is 

certainly an approximation, and it will not always be true. We can 
certainly guarantee its validity in one limit: if we reduce the 
intensity of our light source sufficiently, we will reduce the 

strength of the electric and magnetic fields to the point where the 
influence of the light is small. As we turn up the intensity, there 
may be additional effects that will come into play, and we will come 

back to this possibility later on. However, if we take this 
assumption at face value, we can assume on the right hand side 
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that the coefficient, cn, of a state other than φi will be much 
smaller than ci for all times: 

c (t ) � c (t ) if n ≠ i c (t ) ≈ 1 
n i i 

Where, in the second equality we have noted that if all the other 
coefficients are tiny, ci must be approximately 1 if we want our 

state to stay normalized. 

These two assumptions lead to an equation for the coefficients of the form: 
i( En −E −�ω ) / � −i E n −E f +�ω ) / t � 

i�c� ( ) t = ∑ 12 
V

fn (e 
− f t 

+ e 
( ) cn ( ) t

f


n


⇒ i�c� ( ) t = V (e 
( E −E −�ω ) / � 

+ e 
−i E −E +�ω ) / ) c ( ) t 

−i t ( t �1 i f i f 

f 2 fi i 

( i −E f −�ω ) / � −i E i −E f +�ω ) / t � 
= 1 V (e 

−i E t 
+ e 

( )2 fi 

Now we can integrate this new equation to obtain c (t ) :f 

T 

( ) 2 fi ∫ (
−i E i t ( i t )i�c T = 1 V e 

( −E f −�ω ) / � 
+ e 

−i E −E f +�ω ) / � 
dt 

f 

0 

⇒ c
f ( ) = 

fi 

∫ (e 
( i −E f −�ω ) / � 

+ e 
−i E i −E f +�ω ) / ) Eq. 2 

V T 
−i E t ( t � 

T dt 
2i� 

0 

Now, this formula for c
f (T ) is only approximate, because of assumption 2). 

If we wanted to improve our result for, we could plug our approximate final 
expression (Eq. 2) back in on the RHS of Eq. 1 and then integrate the 

equation again. This would lead to a better approximate solution for c
f (t ) . 

Most importantly, while our approximate solution is linear the interaction 

matrix element, V
fi 
, after plugging the result back in, we would get terms 

that were quadratic in V
fi 
. By assumption 2) above, these quadratic terms 

will be much smaller than the linear ones we have retained above and so we 
feel safe in neglecting them. For these reasons, assumption 2) is known as 
the linear response approximation. 

We now make the final rearrangement: we recall that we are interested in 

the probability of finding the system in the state f. This is given by c T
f ( ) : 

2 
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2 2
T 

2 V 
( ) = 

fi 

2 ∫ (e 
( −E −�ω ) / � 

+ e 
−i E −E +�ω ) / ) dt 

−i E i f t ( i f t � 
P T = c T

f ( ) f 
4� 

0 

Fermi’s Golden Rule 

Now, usually our experiments take a long time from the point of view of 
electromagnetic waves. In a single second a light wave will oscillate billions 
of times. Thus, our observations are likely to correspond to the longtime 

limit of the above expression: 
2 2

TV
fi 

T →∞ ∫ (e 
( i −E f −�ω ) / � 

+ e 
−i E i −E f +�ω ) / ) dt 

−i E t ( t � 
P = lim 

f 24� 
0 

and in fact, we are usually not interested in probabilities, but rates, which 
are probabilities per unit time: 

2 2
TV 

W
fi 

= 
fi 

2

1 
∫ (e 

( i −E f −�ω ) / � 
+ e 

−i E i −E f +�ω ) / ) dt 
−i E t ( t � 

lim 
4� T →∞ T 

0 

This integral looks very difficult. However, it is easy to work out with 
pictures because it is almost always zero. Note that both the real and 
imaginary parts of the integrand oscillate. Thus, we will be computing the 

integral of something that looks like: 

Thus, as long as the integrand oscillates, the positive regions will cancel out 
the negative ones and the integral will be zero. There only two situations 

where the integrand is not oscillatory: E
i 

− E
f 

− �ω = 0 (in which case the 

first term is unity) and E
i 

− E
f 

+ �ω = 0 (in which case the second term is 

unity). We can therefore write 
2 

V 
W

fi 
∝ 

fi 

2 ⎣
⎡δ (E

i 
− E

f 
− �ω) + δ (E

i 
− E

f 
+ �ω)⎦⎤ 4� 

where δ(x) is a function that is defined to be nonzero only when x=0. This 
result is called Fermi’s golden rule. It gives us a way of predicting the rate 

of any i→f transition in any molecule induced by an electromagnetic field of 



8 5.61 Physical Chemistry Lecture #34


arbitrary frequency coming from any direction. This formula – as well as 
generalizations that relax the electric dipole and linear response 
approximations – is probably the single most important relationship in terms 

of how chemists think about spectroscopy, and so we will dwell a bit on the 
interpretation of the various terms. 

On the one hand, the probability of an i→f transition is proportional to 
22 

V = ∫φ f 

* 
V̂φ

i
dτ

fi 

Thus, if the matrix element of the interaction operator V̂ between the 

initial and final states is zero, then the transition never happens. This is 
called a selection rule, and a transition that does not occur because of a 
selection rule is said to be forbidden. For example, in the case of the 

electric field, 
2 22 2 

V = ∫φ f 

* µµµµ̂ iE
0
φ

i
dτ = E

0 
i∫φ f 

* µµµµ̂φ
i
dτ = E

0 
iµµµµ fifi 

Thus, for molecules interacting with electric fields, the transition i→f is 
forbidden unless the matrix element of the dipole operator between i&f is 

nonzero. Meanwhile, in the case of a magnetic field, 
2 2 

22 q g q g
V = ∫φ

f 

* 
m Bi 

0
φ

i
dτ = B

0 
i∫φ f 

* 
Îφ

i
dτ = B iÎ 

fi 0 fi
2m 2m 

Thus, a magnetic field can only induce an i→f transition if the matrix 
element of one of the spin angular momentum operators is nonzero between 
the initial and final states. Selection rules of this type are extremely 

important in determining which transitions will and will not appear in our 
spectra. 

Ef Ei 

The second thing we note about Fermi’s 
Golden Rule is that it enforces energy 

�ω �ωconservation. We note that the energy 
carried by a photon is �ω . The δfunction 
portion is only nonzero if E

f 
− E

i 
= �ω 

EfEi 
(second term) or E

i 
− E

f 
= �ω (first 

term). Thus, the transition only occurs E
f 

− E
i 

= �ω E
f 

− E
i 

= −�ω 

if the energy difference between the 
two states exactly matches the energy 
of the photon we are sending in. This is depicted in the picture at right. 
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The way these terms are interpreted are as follows: in the first case, the 
light increases the energy in the system by exactly one photon worth of 
energy. Here, we think of a photon being absorbed by the molecule and 

exciting the system. In the second case, the light reduces the energy of 
the system by exactly one photon worth of energy. Here, we think of the 
molecule emitting a photon and relaxing to a lower energy state. The fact 

that photon emission by a molecule can be induced by light is called 
stimulated emission, and is the principle on which lasers are built: basically, 
when you shine light on an excited molecule, you get more photons out than 

you put in. 

In order to make much more progress with spectroscopy, we have to 

consider some specific choices of the molecular Hamiltonian, Ĥ
0 
, which we 

do in the next several lectures. Depending on the system at hand the energy 
conservation and selection rules give different spectral signatures that 
ultimately allow us to interpret the spectra of real molecules and to 

characterize their physical properties. 


