page 1

The DEMISE of CLASSICAL PHYSICS (cont'd)

(a) <u>Blackbody radiation</u> - When heated all objects emit light!

<u>Classically</u>: (1) Radiation from a blackbody is the result of electrons oscillating with frequency v Oscillating charged particle ⇔ antennae

(2) The electrons can oscillate (& radiate) equally well at any frequency

 \Rightarrow Rayleigh-Jeans Law for spectral density $\rho(v)$, where intensity of emitted light in frequency range from v to v+dv is $I(v) \sim \rho(v)dv$

$$d\rho = \rho(v,T)dv = \frac{8\pi kT}{c^3}v^2dv \quad \boxed{\propto v^2}$$

where $d\rho(v,T)$ = density of radiative energy in frequency range from v to v+dv at temperature T

> k = Boltzmann's constant [= R/N_A (gas constant per molecule)] c = speed of light

Planck (~1900) \Rightarrow First "quantum" ideas

(1) The energy of the oscillator \propto frequency

 $E \propto v$

(2) The energy
$$\propto$$
 an integral multiple of v
(the # of oscillators n)
 $E \propto nv$
or $E = nhv$
constant

hv becomes a "quantum" of energy

Planck used statistical mechanics (5.62) to derive the expression for black body radiation

(b) <u>Photoelectric effect</u>

Einstein (1905) proposed:

- (1) Light is made up of energy "packets: "photons"
- (2) The energy of a photon is proportional to the light frequency

$$E = hv$$
 $h = Planck's constant$

Comparing to exp't, value of "h" matches the one found by Planck!

<u>This was an extraordinary result !</u>

Summary:

- (1) Structure of atom can't be explained classically
- (2) Discrete atomic spectra and Rydberg's formula can't be explained
- Blackbody radiation can be "explained" by quantifying energy of oscillators E = hv
- (4) Photoelectric effect can be "explained" by quantifying energy of light E = hv

New model of photoelectric effect: