SPHERICAL HARMONICS

$$
\begin{gathered}
Y_{l}^{m}(\theta, \phi)=\Theta_{l}^{|m|}(\theta) \Phi_{m}(\phi) \\
Y_{l}^{m}(\theta, \phi)=\left[\left(\frac{2 l+1}{4 \pi}\right) \frac{(l-|m|)!}{(l+|m|)!}\right]^{\frac{1}{2}} P_{l}^{|m|}(\cos \theta) e^{i m \phi} \\
l=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \pm 3, \ldots \pm l
\end{gathered}
$$

$Y_{l}^{m \prime}$ s are the eigenfunctions to $\hat{H} \psi=E \psi$ for the rigid rotor problem.

$$
\begin{array}{ll}
Y_{0}^{0}=\frac{1}{(4 \pi)^{1 / 2}} & Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{\frac{1}{2}}\left(3 \cos ^{2} \theta-1\right) \\
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \theta & Y_{2}^{ \pm 1}=\left(\frac{15}{8 \pi}\right)^{\frac{1}{2}} \sin \theta \cos \theta e^{ \pm i \phi} \\
Y_{1}^{-1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{i \phi} & Y_{2}^{ \pm 2}=\left(\frac{15}{32 \pi}\right)^{\frac{1}{2}} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{1}^{1}=\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \theta e^{-i \phi} &
\end{array}
$$

$Y_{l}^{m \text { 's }}$ are orthonormal: $\quad \iint Y_{l^{\prime \prime}}^{m^{\prime *}}(\theta, \phi) Y_{l}^{m}(\theta, \phi) \sin \theta d \theta d \phi=\delta_{l l^{\prime}} \delta_{m m^{\prime}}$
Krönecker delta $\delta_{l l^{\prime}}=\left\{\begin{array}{ll}1 & \text { if } l=l^{\prime} \\ 0 & \text { if } l \neq l^{\prime}\end{array} \quad \delta_{m m^{\prime}}=\left\{\begin{array}{lll}1 & \text { if } m=m^{\prime} & \text { normalization } \\ 0 & \text { if } m \neq m^{\prime} & \text { orthogonality }\end{array}\right.\right.$
Energies: (eigenvalues of $\hat{H} Y_{l}^{m}=E_{l m} Y_{l}^{m}$)
Switch $l \rightarrow J$ conventional for molecular rotational quantum \#
Recall

$$
\beta=\frac{2 I E}{\hbar^{2}}=l(l+1) \equiv J(J+1) \quad J=0,1,2, \ldots
$$

$$
\begin{gathered}
E \quad \therefore E_{J}=\frac{\hbar^{2}}{2 I} J(J+1) \\
J=3-\frac{6 \hbar^{2}}{I} \quad Y_{3}^{0}, Y_{3}^{ \pm 1}, Y_{3}^{ \pm 2}, Y_{3}^{ \pm 3}(7 \mathrm{x} \text { degenerate }) \\
J=2 \longrightarrow E_{2}=\frac{3 \hbar^{2}}{I} \quad Y_{2}^{0}, Y_{2}^{ \pm 1}, Y_{2}^{ \pm 2}(5 \mathrm{x} \text { degenerate }) \\
J=1 \longrightarrow E_{1}=\frac{\hbar^{2}}{I} \quad Y_{1}^{0}, Y_{1}^{0}(2 \mathrm{x} \text { degenerate }) \\
J=0 \longrightarrow E_{0}=0 \quad Y_{0}^{0}(\text { nondegenerate })
\end{gathered}
$$

Degeneracy of each state $\quad g_{J}=(2 J+1)$

$$
\text { from } m=0, \pm 1, \pm 2, \ldots, \pm J
$$

Spacing between states \uparrow as $J \uparrow$

$$
E_{J+1}-E_{J}=\frac{\hbar^{2}}{2 I}[(J+1)(J+2)-J(J+1)]=\frac{\hbar^{2}}{I}(J+1)
$$

Transitions between rotational states can be observed through spectroscopy, i.e. through absorption or emission of a photon

or

Molecules need a permanent dipole for rotational transitions. Oscillating electric field grabs charges and torques the molecule.

Strength of transition $I_{J J^{\prime}} \propto\left|\frac{d \mu}{d x} \int_{-\infty}^{\infty} \psi_{J^{\prime}}^{*}(\xi \cdot \mu) \psi_{J} d x\right|^{2}$

$$
\begin{array}{lr}
\text { electric field } & \text { dipole moment } \\
\text { of light } & \text { of rotor }
\end{array}
$$

Leads to selection rule for rotational transitions: $\quad \Delta J= \pm 1$
Recall angular momentum is quantized (in units of \hbar).
Photon carries one quantum of angular momentum.
Conservation of angular momentum $\Rightarrow \Delta J= \pm 1$
Angular momentum of molecule changes by 1 quantum upon absorption or emission of a photon.

$$
E_{\substack{\text { photon } \\ J \rightarrow+1}}=h v_{\substack{\text { photon } \\ J \rightarrow J+1}}=\Delta E_{\text {rot }}=E_{J+1}-E_{J}=\frac{\hbar^{2}}{I}(J+1) \quad v_{\substack{\text { photon } \\ J \rightarrow J+1}}=\frac{h}{4 \pi^{2} I}(J+1)
$$

Define

$$
B \equiv \frac{h}{8 \pi^{2} I} \quad \text { rotational constant }(\mathrm{Hz})
$$

and

$$
\begin{aligned}
& \bar{B} \equiv \frac{h}{8 \pi^{2} c I} \\
& \text { rotational constant }\left(\mathrm{cm}^{-1}\right) \\
& \therefore v_{J \rightarrow J+1}(\mathrm{~Hz})=2 B(J+1) \quad \bar{v}_{J \rightarrow J+1}\left(\mathrm{~cm}^{-1}\right)=2 \bar{B}(J+1)
\end{aligned}
$$

This gives rise to a rigid rotor absorption spectrum with evenly spaced lines.

$$
J=0
$$

Spacing between transitions is

$$
2 B(\mathrm{~Hz}) \text { or } 2 \bar{B}\left(\mathrm{~cm}^{-1}\right)
$$

$$
\bar{v}_{J+1 \rightarrow J+2}-\bar{v}_{J \rightarrow J+1}=2 \bar{B}[(J+1)+1]-2 \bar{B}(J+1)=2 \bar{B}
$$

Use this to get microscopic structure of diatomic molecules directly from the absorption spectrum!

Get \bar{B} directly from the separation between lines in the spectrum.
Use its value to determine the bond length ro!

$$
\begin{array}{r}
2 \bar{B}=\frac{h}{4 \pi^{2} c I} \quad I=\mu r_{0}^{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
\therefore \\
r_{0}=\left[\frac{h}{8 \pi^{2} c \bar{B} \mu}\right]^{\frac{1}{2}}\left(\bar{B} \text { in } \mathrm{cm}^{-1}\right) \quad \text { or } \quad r_{0}=\left[\frac{h}{8 \pi^{2} B \mu}\right]^{\frac{1}{2}}(B \text { in } \mathrm{Hz})
\end{array}
$$

