The DEMISE of CLASSICAL PHYSICS

(a) Discovery of the Electron

In 1897 J.J. Thomson discovers the electron and measures (e/m_e) (and inadvertently invents the cathode ray (TV) tube)

Faraday (1860's - 1870's) had already shown using electrochemistry that amounts of electric current proportional to amounts of some substances could be liberated in an electrolytic cell. The term "electron" was suggested as a natural "unit" of electricity.

But Thomson experimentally observes electrons as particles with charge & mass.

Thomson found that results are independent of (1) cathode material

(2) residual gas composition

 \Rightarrow "electron" is a distinct particle, present in all materials!

Classical mechanics \Rightarrow force on electron due to deflector voltage:

 $F_{y} = \xi e \qquad \text{(force starts at time } t = 0 \text{ when electron enters region between plates)}$ $= m \frac{dv_{y}}{dt} \quad \left(F = ma\right) \qquad \therefore \quad \frac{dv_{y}}{dt} = \xi \left(\frac{e}{m_{e}}\right)$ $\text{Integrating} \implies v_{y} = \left(\frac{e}{m_{e}}\right) \xi t \qquad \text{[Note } v_{y} \left(t = 0\right) = 0\text{]}$

Integrating again since
$$v_y = \frac{dy}{dt}$$
 and $y(t=0) = 0 \implies y = \left(\frac{e}{m_e}\right)\frac{\xi t_f^2}{2}$

 t_{f} = total time electron is between the plates (easily calculated)

Set voltage ξ , calculate time t_f , measure displacement $y \Rightarrow \left(\frac{e}{m_e}\right) = 1x10^{11} \text{ C/kg}$

Modern day value is
$$\left(\frac{e}{m_e}\right) = 1.758 \times 10^{11} \text{ C/kg}$$

(b) 1909 Milliken oil drop experiment determines e, me separately

Gravitational force downward:

 $F_g = -Mg$ M = mass of droplet, g = gravitational constant

Frictional force upward due to air:

 $F_f = 6\pi r \eta v$ r = radius of droplet, $\eta =$ air viscosity, v = droplet velocity

Since $F_f \propto v$, terminal velocity v_t is reached when forces balance $6\pi r\eta v_t = Mg \implies \text{get droplet mass } M = 6\pi r\eta v_t/g$

Now use x-rays or γ -rays to add some charge (ne) to the droplets Voltage ξ across plates exerts Coulomb force $F_c = \xi ne$ on the charged droplet

$$\xrightarrow{\text{x-rays}} \xrightarrow{\bullet^{n-}} \xrightarrow{\uparrow_{F_g}} \xrightarrow{\downarrow_{F_g}} \xrightarrow{\downarrow_{F_f}} \bigcirc$$

 F_{g}

 $\begin{array}{ll} \mbox{Adjust voltage until drop stops falling:} & v=0 \implies F_f=0, \quad F_c=F_g \\ \xi ne=Mg & \mbox{Determine } ne=Mg/\xi \end{array}$

Mulliken did this for lots of droplets i = 1, 2, 3, ...

They all had different charges $(n_i e)$ but all integer multiples of charge (e)

Determined elementary charge as $e = 1.59 \times 10^{-19} \text{ C}$

(very close to today's value $e = 1.602 x 10^{-19}$ C)

Combining values for (e/m_e) and $(e) \Rightarrow m_e = 9.11x10^{-31} \text{ kg}$

Hydrogen mass was known: $m_H = 1.66 x 10^{-27} \text{ kg} \Rightarrow \text{electron is subatomic!!}$

(c) <u>Where are the electrons?</u> What's the <u>structure</u> of the atom?

Angstrom (10⁻¹⁰ m) atomic size scale already inferred from gas kinetics First "jellium" model didn't last long

⇒ (1) He²⁺ nucleus very small, « 10⁻¹⁰ m (Rutherford estimated 10⁻¹⁴ m)
 (2) Au atoms are mostly empty!

 $-(\text{jelly})^{n_+}$

This is stable compared to separated electron & nucleus

$$E = \text{K.E.} + \text{P.E.} = \frac{1}{2}m_e v^2 + \left(-\frac{Ze^2}{4\pi\varepsilon_0 r}\right) = -\frac{1}{2}\frac{Ze^2}{4\pi\varepsilon_0 r} < 0$$

BUT model not consistent with classical electrodynamics:

Accelerating charge emits radiation! (centripetal acceleration = v^2/r) And since light has energy, E must be getting more negative with time

> ⇒ r must be getting smaller with time! ⇒ Electron spirals into nucleus in ~ $10^{-10} s$!

Also, as r decreases, v should increase Frequency v of emitted light = frequency of rotation

$$v (Hz = cycles/s) = \frac{v (m/s)}{2\pi r (m/cycle)}$$
circumference of orbit

 \Rightarrow atom should emit light at <u>all</u> frequencies - that is it should produce a <u>continuous</u> spectrum

Lecture #2

BUT emission from atoms was known to be <u>discrete</u>, not continuous!

For H:

For the H atom, Rydberg showed that the spectrum was consistent with the simple formula:

$$\overline{v} \text{ (cm}^{-1}) = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

with $n_1 = 1, 2, 3, ...$ and $n_2 = n_1 + 1, n_1 + 2, n_1 + 3, ...$
 $R = 1.097 \times 10^5 \text{ cm}^{-1}$ (Rydberg constant)

 $n_1 = 1$ Lyman series $n_1 = 2$ Balmer series $n_1 = 3$ Paschen series

visible & UV lines well known

Summary: Rutherford's model of the atom

- (1) Is not stable relative to collapse of electron into nucleus
- (2) Does not yield discrete emission lines,
- (3) Does not explain the Rydberg formula