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Angular Momentum

Since L̂

2 and L̂ commute, they share common eigenfunctions. These functions are z 

extremely important for the description of angular momentum problems – they 
determine the allowed values of angular momentum and, for systems like the Rigid 
Rotor, the energies available to the system. The first things we would like to know 

are the eigenvalues associated with these eigenfunctions. We will denote the 

eigenvalues of L̂
2 and L̂ 

z by α and β, respectively so that: 
2 β ( , ) = α Y β 

, ) ˆ β θ φ ) = βY β ( , )L̂ Y θ φ (θ φ L Y ( , θ φ α α z α α 

For brevity, in what follows we will omit the dependence of the eigenstates on θ 

and φ so that the above equations become 
ˆ2 β β ˆ β β
L Y = α Y L Y = βYα α z α α 

It is convenient to define the raising and lowering operators (note the similarity to 

the Harmonic oscillator!): 

L̂ ≡ L̂ ± iL ˆ 
± x y 

Which satisfy the commutation relations: 

⎡L̂ , L̂ ⎤ = 2�L̂ ⎡L̂ , L̂ ⎤ = ± �L̂ ⎡L̂ , L̂
2 ⎤ = 0⎣ + − ⎦ z ⎣ z ± ⎦ ± ⎣ ± ⎦ 

These relations are relatively easy to prove using the commutation relations we’ve 

already derived: 

⎡ ˆ ˆ ˆ ⎡ ˆ ˆ ˆ ⎡ ˆ ˆ ˆ ⎡ ̂ 2 ˆ ⎤ =⎣Lx , Ly ⎦
⎤ = i L � z ⎣Ly , Lz ⎦

⎤ = i L � x ⎣Lz , Lx ⎦
⎤ = i L � y ⎣L , Lz ⎦ 0 

For example: 

⎡L̂ , L̂ ⎤ = ⎡L̂ , L̂ ⎤ ± i ⎡L̂ , L̂ ⎤
⎣ z ± ⎦ ⎣ z x ⎦ ⎣ z y ⎦ 

= i L y ± i (− � x ) = ± � (Lx y )� i L ± iL 

= ± �L̂ 
± 

The raising and lowering operators have a peculiar effect on the eigenvalue of L̂ 
z : 

ˆ ˆ β ˆ ˆ ˆ ˆ β ˆ ˆ β ˆ β
L (L Y ) = (⎡L , L ⎤ + L L )Y = (±�L + L β )Y = (β ± �) (L Y )z ± α ⎣ z ± ⎦ ± z α ± ± α ± α 

Thus, L̂+ ( L̂− ) raises (lowers) the eigenvalue of L̂ 
z by � , hence the names. Since 

the raising and lowering operators commute with L̂
2 they do not change the value 

of α and so we can write 
ˆ β ∝ Y β ±�
L Y ± α α 

and so the eigenvalues of L̂ 
z are evenly spaced! 

What are the limits on this ladder of eigenvalues? Recall that for the harmonic 
oscillator, we found that there was a minimum eigenvalue and the eigenstates could 
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be created by successive applications of the raising operator to the lowest state. 
There is also a minimum eigenvalue in this case. To see this, note that 

2 2 2 2ˆ ˆ ˆ ˆ 0 x y x y L L L L+ = + ≥ 

This result simply reflects the fact that if you take any observable operator and 
square it, you must get back a positive number. To get a negative value for the 

average value of L̂
2 

x or L̂
2 

y would imply an imaginary eigenvalue of L̂ 
x or L̂ 

y , which is 

impossible since these operators are Hermitian. Besides, what would an imaginary 

angular momentum mean? We now apply the above equation for the specific 

wavefunction Yα
β : 

0 ≤ ∫Yα
β* ( L̂

2 

x + L̂2 

y )Yα
β = ∫Yα

β* (L̂
2 − L̂2 

z )Yα
β 

= ∫Yα
β* (α − β 2 )Yα

β 

= α − β 2 

Hence β 2 ≤ α and therefore − α ≤ β ≤ α . Which means that there are both 

maximum and minimum values that β can take on for a given α. If we denote these 

values by βmax and βmin, respectively, then it is clear that 
ˆ βmax ˆ βmin L Y = 0 L Y = 0 .+ α − α 

We can then use this knowledge and some algebra tricks trick to determine the 
relationship between α and βmax (or βmin). First note that: 

ˆ ˆ β ˆ ˆ β⇒ L L Y max = 0 L L Y min = 0− + α + − α 

We can expand this explicitly in terms of L̂ 
x and L̂ 

x : 

L − ( − L L ) Y max = 0 L + L + ( − L L ) Y min = 0⇒ L + i L L i L L ( ˆ2 

x 
ˆ2 

y 
ˆ 

y 
ˆ 

x 
ˆ 

x 
ˆ 

y ) α
β ( ˆ2 

x 
ˆ2 

y 
ˆ 

y 
ˆ 

x 
ˆ 

x 
ˆ 

y ) α
β 

However, this is not the most convenient form for the operators, because we don’t 

know what L̂ 
x or L̂ 

y gives when acting on Yα
β . However, we can rewrite the same 

expression in terms of L̂
2 and L̂ 

z : 

ˆ2 ˆ2 ˆ ˆ ˆ ˆ(L + L ± ( − L L ))i L L x y y x x y 

L̂
2 − L̂2 −i L� ̂  

z z 

So then we have 

⇒ (L̂
2 − L̂2 

z − �L̂ 
z )Yα

β max = 0 (L̂
2 − L̂2 

z + �L̂ 
z )Yα

βmin = 0 

⇒ (α − β 2 − �β ) = 0 (α − β 2 + �β ) = 0 max max min min 

⇒ α = β max (β max + �) = βmin (βmin − �) 

⇒ β = − β ≡ �l max min 
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where in the last line we have simply defined a new variable, l, that is dimensionless 
(notice that � has the units of angular momentum). So combining these minimum 
and maximum values we have that −�l ≤ β ≤ �l . Further, since we can get from the 

lowest to the highest eigenvalue in increments of � by successive applications of 
the raising operator, it is clear that the difference between the highest and 
lowest values [ �j − (−�j) = 2�l ] must be an integer multiple of � . Thus, l itself must 

either be an integer or a halfinteger. 

Putting all these facts together, we conclude (Define m ≡ β / � ): 

2 31 
2 2 

ˆ ( 1) 0, ,1, ,2... m m 
l lY l l Y l= + =2L � 

and 

ˆ , 1... 1, m m 
z l lL Y m Y m l l l l= = − − + −� 

where we have replaced α with l and β with m so that Yα
β becomes Yl

m . Also, in the 

first equation, we have noted that 0 ≤ L̂
2 = �2

l (l +1) implies l ≥ 0 . These are the 

fundamental eigenvalue equations for all forms of angular momentum. 

Notice that there is a difference here from what we saw for the rigid rotor. 

There, we had: 

�
2 

E = J ( J +1) J = 0, 1, 2,... J 
2I 

where, as a reminder, the quantum number J for the rigid rotor is equivalent to the 
quantum number l define above. Here, the dependence of the energy on J – 

E ∝ J (J +1)  is the same as we found in our derivation for L̂
2 . The factor of 1 / 2I 

simply arises from the fact that the rigid rotor Hamiltonian is L̂
2

/ 2I rather than 

L̂
2 . The real difference is that half integer values of J do not appear for the 

rigid rotor. At first, you might think this means we made a mistake in our 

derivation above and that l should only be an integer and not a half integer. 
However, there is no error. The difference arises because our derivation above is 
valid for any kind of angular momentum. Thus, while certain values of l may not 

appear for certain types of angular momentum (e.g. they don’t occur for the rigid 
rotor) we will see later on that they can appear for other types of angular 
momentum. Most notably, electrons have an intrinsic spin angular momentum with 

l = 1 . Thus, while individual systems may have additional restrictions on the 
2 
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allowed values of l, angular momentum states always obey the above eigenvalue 
relations. 


