Ehrenfest's Theroem

In the lecture notes for the harmonic oscillator we derived the expressions for $\langle\hat{x}\rangle(t)$ and $\left\langle\hat{p}_{x}\right\rangle(t)$ using standard approaches - integrals involving Hermite polynomials (see pages 17 and 18, Lecture Summary 12-15). The calculations are algebraically intensive, but showed that $\langle\hat{x}\rangle(t)$ and $\left\langle\hat{p}_{x}\right\rangle(t)$ oscillate at the vibrational frequency. The results were as follows:

$$
\langle x\rangle(t)=(2 \alpha)^{-1 / 2} \cos \left(\omega_{v i b} t\right)=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \cos \left(\omega_{v i b} t\right)
$$

and

$$
\langle p\rangle(t)=\frac{1}{2}\left[i \hbar\left(\frac{\alpha}{2}\right)^{1 / 2}\left(e^{i \omega_{\omega, b t} t}-e^{-i \omega_{\omega, b} t}\right)\right]=-\left(\frac{\hbar \mu \omega}{2}\right)^{1 / 2} \sin \left(\omega_{v i b} t\right)
$$

The issue considered here is an approach to calculate $\langle x\rangle(t)$ and $\langle p\rangle(t)$ in a more straightforward manner.

Classically, (we use m instead of μ since we are dealing with a free particle)

$$
p=m v=m \frac{d x}{d t}
$$

So, quantum mechanically we might expect

$$
\langle p\rangle(t)=m \frac{d\langle x\rangle(t)}{d t} .
$$

But, is this expression valid? We can show that in fact it is with the following argument.

For $\frac{d\langle x\rangle(t)}{d t}$ our original expression was ...

$$
\frac{d\langle x\rangle(t)}{d t}=\frac{d}{d t}\left\{\int_{-\infty}^{\infty} \psi^{*} \hat{x} \psi d x\right\}=\int_{-\infty}^{\infty} \frac{d \psi^{*}}{d t} \hat{x} \psi d x+\int_{-\infty}^{\infty} \psi^{*} \hat{x} \frac{d \psi}{d t} d x
$$

Recall the time dependent Schrödinger equation is

$$
i \hbar \frac{\partial \psi}{\partial t}=H \psi \quad \text { or } \quad \frac{\partial \psi}{\partial t}=\frac{1}{i \hbar} H \psi
$$

Inserting these results into the expression above yields

$$
\begin{aligned}
& \frac{d\langle x\rangle(t)}{d t}=-\frac{1}{i \hbar} \int_{-\infty}^{\infty}(\hat{H} \psi)^{*} \hat{x} \psi d x+\frac{1}{i \hbar} \int_{-\infty}^{\infty} \psi^{*} \hat{x}(\hat{H} \psi) d x \\
& =\frac{1}{i \hbar} \int_{-\infty}^{\infty} \psi^{*}(\hat{x} \hat{H}-\hat{H} \hat{x}) \psi d x=\frac{i}{\hbar} \int_{-\infty}^{\infty} \psi^{*}(\hat{H} \hat{x}-\hat{x} \hat{H}) \psi d x
\end{aligned}
$$

Evaluating the commutator (assuming that H is the HO Hamiltonian) we find

$$
\begin{aligned}
(\hat{H} \hat{x}-\hat{x} \hat{H}) f(x)= & \left(-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+U(x)\right) \hat{x} f(x)-\hat{x}\left(-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+U(x)\right) f(x) \\
& =-2 \frac{\hbar^{2}}{2 \mu} \frac{d f}{d x}=-\frac{\hbar^{2}}{\mu}\left(\frac{i}{\hbar} \hat{p}_{x}\right)=-\frac{i \hbar}{\mu} \hat{p}_{x}
\end{aligned}
$$

And therefore

$$
\frac{d\langle x\rangle(t)}{d t}=\frac{i}{\hbar} \int_{-\infty}^{\infty} \psi^{*}(\hat{H} \hat{x}-\hat{x} \hat{H}) \psi d x=\frac{1}{m} \int_{-\infty}^{\infty} \psi^{*} \hat{p}_{x} \psi d x
$$

Which is the result that is desired

$$
\left\langle\hat{p}_{x}\right\rangle(t)=\mu \frac{d\langle x\rangle(t)}{d t}
$$

Thus, we can now obtain $\left\langle\hat{p}_{x}\right\rangle(t)$ without the lengthy calculation contained in the HO lecture notes.

$$
\begin{gathered}
\left\langle\hat{p}_{x}\right\rangle(t)=\mu \frac{d\langle x\rangle(t)}{d t}=\mu \frac{d}{d t}\left\{\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \cos (\omega t)\right\}=-\left(\frac{\mu \omega \hbar}{2}\right)^{1 / 2} \sin (\omega t) \\
\left\langle\hat{p}_{x}\right\rangle(t)=-\left(\frac{\mu \omega \hbar}{2}\right)^{1 / 2} \sin (\omega t)
\end{gathered}
$$

which is the result with which we started initially.
The equations above are a specific illustration of a more general result due to Paul Ehrenfest (an Austrian physicst who later resided in Leiden, The Netherlands) and known as Ehrenfest's Theorem. In particular, for any dynamical variable F

$$
\frac{d\langle F\rangle(t)}{d t}=\frac{i}{\hbar} \int_{-\infty}^{\infty} \psi^{*}(\hat{H} \hat{F}-\hat{F} \hat{H}) \psi d x
$$

For further information see McQuarrie Problems 4-43 and 4-44, p 187-188.

