Harmonic Oscillator Energies and Wavefunctions via Raising and Lowering Operators

We can rearrange the Schrödinger equation for the HO into an interesting form ...

$$
\frac{1}{2 m}\left[\left(\frac{\hbar}{i} \frac{d}{d x}\right)^{2}+(m \omega x)^{2}\right] \psi=\frac{1}{2 m}\left[p^{2}+(m \omega x)^{2}\right] \psi=E \psi
$$

with

$$
H=\frac{1}{2 m}\left[p^{2}+(m \omega x)^{2}\right]
$$

which has the same form as

$$
u^{2}+v^{2}=(i u+v)(-i u+v) .
$$

We now define two operators

$$
a_{ \pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i p+m \omega x)
$$

that operate on the test function $f(x)$ to yield

$$
\begin{gathered}
\left(a_{-} a_{+}\right) f(x)=\left(\frac{1}{2 \hbar m \omega}(i p+m \omega x)(-i p+m \omega x)\right) f(x) \\
=\frac{1}{2 \hbar m \omega}\left[p^{2}+(m \omega x)^{2}-i m \omega(x p-p x)\right] f(x) \\
=\left\{\frac{1}{2 \hbar m \omega}\left(p^{2}+(m \omega x)^{2}\right)-\frac{i}{2 \hbar}[x, p]\right\} f(x) \\
a_{-} a_{+}=\frac{1}{2 \hbar m \omega}\left(p^{2}+(m \omega x)^{2}\right)+\frac{1}{2}=\frac{1}{\hbar \omega} H+\frac{1}{2}
\end{gathered}
$$

Which leads to a new form of the Schrödinger equation in terms of a_{+}and $a_{-} \ldots$

$$
H \psi=\hbar \omega\left(a_{-} a_{+}-\frac{1}{2}\right) \psi
$$

If we reverse the order of the operators-- $a_{-} a_{+} \Rightarrow a_{+} a_{-}--$we obtain ...

$$
H \psi=\hbar \omega\left(a_{+} a_{-}+\frac{1}{2}\right) \psi
$$

or

$$
\hbar \omega\left(a_{ \pm} a_{\mp} \pm \frac{1}{2}\right) \psi=E \psi
$$

and the interesting relation

$$
a_{-} a_{+}-a_{+} a_{-}=\left[a_{-} a_{+}\right]=1
$$

A CLAIM: If ψ satisfies the Schrödinger equation with energy $E_{\text {, then }} a_{+} \psi$ satisfies it with energy ($\mathrm{E}+\hbar \omega$)!

$$
\begin{gathered}
H\left(a_{+} \psi\right)=\hbar \omega\left(a_{+} a_{-}+\frac{1}{2}\right)\left(a_{+} \psi\right)=\hbar \omega\left(a_{+} a_{-} a_{+}+\frac{1}{2} a_{+}\right) \psi \\
=\hbar \omega a_{+}\left(a_{-} a_{+}+\frac{1}{2}\right) \psi=a_{+}\left\{\hbar \omega\left(a_{+} a_{-}+1+\frac{1}{2}\right) \psi\right\}=a_{+}\left\{\hbar \omega\left(a_{+} a_{-}+\frac{1}{2}\right)+\hbar \omega\right\} \psi \\
=a_{+}(H+\hbar \omega) \psi=(E+\hbar \omega)\left(a_{+} \psi\right) \\
H\left(a_{+} \psi\right)=(E+\hbar \omega)\left(a_{+} \psi\right)
\end{gathered}
$$

Likewise, a_ ψ satisfies the Schrödinger equation with energy ($\mathrm{E}-\hbar \omega$) ...

$$
\begin{gathered}
H\left(a_{-} \psi\right)=\hbar \omega\left(a_{-} a_{+}-\frac{1}{2}\right)\left(a_{-} \psi\right)=\hbar \omega\left(a_{-} a_{+} a_{-}-\frac{1}{2} a_{-}\right) \psi=a_{-} \hbar \omega\left(a_{+} a_{-}-\frac{1}{2}\right) \psi \\
=a_{-}\left\{\hbar \omega\left(a_{-} a_{+}-1-\frac{1}{2}\right) \psi\right\}=a_{-}(H-\hbar \omega) \psi=a_{-}(E-\hbar \omega) \psi \\
H\left(a_{-} \psi\right)=(E-\hbar \omega)\left(a_{-} \psi\right)
\end{gathered}
$$

So, these are operators connecting states and if we can find one state then we can use them to generate other wavefunctions and energies. In the parlance of the trade the $a_{ \pm}$are known as LADDER operators or

$$
a_{+}=\text {RAISING and } a_{-}=\text {LOWERING operators. }
$$

We know there is a bottom rung on the ladder $\psi 0$ so that

$$
a_{-} \psi_{0}=0
$$

$$
\frac{1}{\sqrt{2 \hbar m \omega}}\left(\hbar \frac{d}{d x}+m \omega x\right) \psi_{0}=0
$$

Integrating this equation yields

$$
\begin{gathered}
\frac{d \psi_{0}}{d x}=-\frac{m \omega}{\hbar} x \psi_{0} \\
\int \frac{d \psi_{0}}{\psi_{0}}=-\frac{m \omega}{\hbar} \int x d x \Rightarrow \ln \psi_{0}=-\frac{m \omega}{2 h} x^{2}+A_{0} \\
\psi_{0}(x)=A_{0} e^{-\frac{m \omega}{2 \hbar} x^{2}} \text { and } E_{0}=\frac{1}{2} \hbar \omega
\end{gathered}
$$

Eo comes from plugging ψ_{0} into $H \psi=E \psi$. We will perform the normalization below.

Now that we are firmly planted on the bottom rung of the ladder, we can utilize a_{+}repeatedly to obtain other wavefunctions, ψ_{n}, and energies, E_{n}. That is,

$$
\psi_{n}(x)=A_{n}\left(a_{+}\right)^{n} e^{-\frac{m \omega}{2 \hbar} x^{2}}, \quad \text { with } \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

Thus, for ψ_{1} we obtain

$$
\psi_{1}(x)=A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}}\left(\frac{2 m \omega}{\hbar}\right)^{\frac{1}{2}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}
$$

where you still have to determine the normalization constant A_{1}.

Algebraic Normalization of the Wavefunctions: We can perform the normalization algebraically. We know that

$$
a_{+} \psi_{n}=c_{n} \psi_{n+1} \quad a_{-} \psi_{n}=d_{n} \psi_{n-1}
$$

What are the proportionality factors c_{n} and d_{n} ? For any functions $f(x)$ and $g(x)$

$$
\int_{-\infty}^{\infty} f^{*}\left(a_{ \pm}\right) g d x=\int_{-\infty}^{\infty}\left(a_{\mp} f\right)^{*} g d x
$$

here a_{\mp} is the Hermitian conjugate of $a_{ \pm}$

Proof:

$$
\int_{-\infty}^{\infty} f^{*}\left(a_{ \pm} g\right) d x=\frac{1}{(2 \hbar m \omega)^{1 / 2}} \int_{-\infty}^{\infty} f^{*}\left(\mp \hbar \frac{d}{d x}+m \omega x\right) g d x
$$

recall that

$$
a_{ \pm}=\frac{1}{(2 \hbar m \omega)^{1 / 2}}[\mp i p+m w x]=\frac{1}{(2 \hbar m \omega)^{1 / 2}}\left[\mp i\left(\frac{\hbar}{i} \frac{d}{d x}\right)+m w x\right]=\frac{1}{(2 \hbar m \omega)^{1 / 2}}\left[\mp \hbar \frac{d}{d x}+m w x\right]
$$

Integrate by parts

$$
\int f^{*}\left(a_{ \pm} g\right) d x=\frac{1}{(2 \hbar m w)} d x=\int_{-\infty}^{\infty}\left[\left(\pm \hbar \frac{d}{d x}+m w x\right) f\right]^{*} g d x=\int_{-\infty}^{\infty}\left(a_{\mp} f\right)^{*} g d x
$$

So we can write

$$
\int_{-\infty}^{\infty}\left(a_{ \pm} \psi_{n}\right) *\left(a_{ \pm} \psi_{n}\right) d x=\int_{-\infty}^{\infty}\left(a_{\mp} a_{ \pm} \psi_{n}\right) * \psi_{n} d x
$$

We now use

$$
\begin{gathered}
\hbar \omega\left(a_{ \pm} a_{\mp} \pm \frac{1}{2}\right) \psi_{n}=E_{n} \psi_{n} \quad \text { and } \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar w \\
\left(a_{+} a_{-} \pm \frac{1}{2}\right) \psi_{n}=\left(n+\frac{1}{2}\right) \psi_{n}
\end{gathered}
$$

and therefore

$$
a_{+} a_{-} \psi_{n}=n \psi_{n}
$$

And

$$
\hbar \omega\left(a_{-} a_{+}-\frac{1}{2}\right) \psi_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \psi_{n}
$$

$$
a_{-} a_{+} \psi_{n}=(n+1) \psi_{n}
$$

We can now calculate c_{n} :

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(a_{+} \boldsymbol{\psi}_{n}\right) *\left(a_{+} \boldsymbol{\psi}_{n}\right) d x=\left|c_{n}\right|^{2} \int_{-\infty}^{\infty} \boldsymbol{\psi}_{n+1}^{*} \boldsymbol{\psi}_{n+1} d x=\int_{-\infty}^{\infty}\left(a_{-} a_{+} \boldsymbol{\psi}_{n}\right) * \psi_{n} d x=(n+1) \int_{-\infty}^{\infty} \boldsymbol{\psi}_{n}^{*} \boldsymbol{\psi}_{n} d x \\
c_{n}=\sqrt{n+1}
\end{gathered}
$$

The calculation for d_{n} proceeds in a similar manner :

$$
\begin{gathered}
\int_{-\infty}^{\infty}\left(a_{-} \psi_{n}\right)^{*}\left(a_{-} \psi_{n}\right) d x=\left|d_{n}\right|^{2} \int_{-\infty}^{\infty} \psi_{n-1}^{*} \psi_{n-1} d x=\int_{-\infty}^{\infty}\left(a_{+} a_{-} \psi_{n}\right)^{*} \psi_{n} d x=n \int_{-\infty}^{\infty} \psi_{n}^{*} \psi_{n} d x \\
d_{n}=\sqrt{n}
\end{gathered}
$$

Thus we obtain the two normalization constants for the $a_{ \pm}$

$$
a_{+} \psi_{n}=(n+1)^{1 / 2} \psi_{n+1} \quad a_{-} \psi_{n}=n^{1 / 2} \psi_{n-1}
$$

HO Wavefunctions: Rearranging the equations to a slightly more useful form yields

$$
\psi_{n+1}=\frac{1}{(n+1)^{1 / 2}} a_{+} \psi_{n} \quad \psi_{n-1}=\frac{1}{n^{1 / 2}} a_{-} \psi_{n}
$$

We can now use these equations to generate other wavefunctions. Thus, if we start with ψ_{0} we obtain:

$$
\begin{gathered}
n=0 \quad \psi_{1}=\frac{1}{(0+1)^{1 / 2}} a_{+} \psi_{0}=a_{+} \psi_{0} \\
n=1 \quad \psi_{2}=\frac{1}{\sqrt{2}} a_{+} \psi_{1}=\frac{1}{\sqrt{2}}\left(a_{+}\right)^{2} \psi_{0} \\
n=2 \quad \psi_{3}=\frac{1}{\sqrt{2+1}} a_{+} \psi_{2}=\frac{1}{\sqrt{3 \cdot 2}} a_{+}^{3} \psi_{0} \\
n=3 \quad
\end{gathered} \psi_{4}=\frac{1}{\sqrt{3+1}} a_{+} \psi_{3}=\frac{1}{\sqrt{4 \cdot 3 \cdot 2}} a_{+}^{4} \psi_{0}
$$

So that ψ_{n} is

$$
\psi_{n}=\frac{1}{\sqrt{n!}}\left(a_{+}\right)^{n} \psi_{0}
$$

Orthogonality of the HO Wavefunctions: Recall the orthogonality condition for two wave functions is

$$
\int_{-\infty}^{\infty} \psi_{n}^{*} \psi_{m} d x=\delta_{n m}
$$

Using the $a_{ \pm}$operators we can show this condition also holds for the HO wavefunctions. The proof is as follows.

$$
\begin{gathered}
\int \psi_{m}^{*}\left(a_{+} a_{-}\right) \psi_{n} d x=n \int \psi_{m}^{*} \psi_{n} d x \\
\int\left(a_{-} \psi_{m}\right)^{*}\left(a_{-} \psi_{m}\right) d x=\int\left(a_{+} a_{-} \psi_{m}\right)^{*} \psi_{n} d x=m \int \psi_{m}^{*} \psi_{n} d x \\
(n-m) \int \psi_{m}^{*} \psi_{n} d x=0
\end{gathered}
$$

The trivial case occurs when $n=m$; but when $n \neq m$ then

$$
\int \psi_{m}^{*} \psi_{n} d x=0
$$

Potential Energy of the Harmonic Oscillator: We can now use the $a_{ \pm}$operators to perform some illustrative calculations. Consider the potential energy associated with the HO .

$$
V=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

and therefore

$$
\langle V\rangle=\left\langle\frac{1}{2} m \omega^{2} x^{2}\right\rangle=\frac{1}{2} m \omega^{2} \int \psi_{n}^{*} \hat{x}^{2} \psi_{n} d x
$$

First, we express \hat{x} and \hat{p} in terms of $a_{ \pm}$operators ...

$$
\hat{x}=\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2}\left(a_{+}+a_{-}\right) \quad \hat{p}=i\left(\frac{\hbar m \omega}{2}\right)^{1 / 2}\left(a_{+}-a_{-}\right)
$$

and

$$
x^{2}=\left(\frac{\hbar}{2 m \omega}\right)\left(a_{+}+a_{-}\right)^{2}=\left(\frac{\hbar}{2 m \omega}\right)\left(a_{+} a_{+}+a_{+} a_{-}+a_{-} a_{+}+a_{-} a_{-}\right)
$$

Dirac Notation: Before we evaluate this expression let's introduce some new notation that will make life simpler for us on future occasions. Instead of writing the integral between $\pm \infty$ we use brackets $\langle\mid\rangle$ to denote this integral. The first half is called a "bra" and the second a "ket". That is, "bra"-c-"ket" notation is

$$
\text { bra }=\langle | \text { and ket }=| \rangle
$$

and for the probability density we would have an expression such as

$$
\int_{-\infty}^{\infty} \psi_{m}^{*} \psi_{n} d x=\langle m \mid n\rangle
$$

where the present of ψ_{m}^{*} is understood. Using this notation, integrals for $\langle x\rangle,\langle p\rangle$, and $\left\langle x^{2}\right\rangle$ assume the form

$$
\begin{gathered}
\int_{-\infty}^{\infty} \psi_{m}^{*} \hat{x} \psi_{n} d x=\langle m| \hat{x}|n\rangle \quad \text { and } \int_{-\infty}^{\infty} \psi_{m}^{*} \hat{p} \psi_{n} d x=\langle m| \hat{p}|n\rangle \\
\langle V\rangle=\left\langle\frac{1}{2} m \omega^{2} x^{2}\right\rangle=\frac{1}{2} m \omega^{2} \int \psi_{n}^{*} \hat{x}^{2} \psi_{n} d x=\frac{1}{2} m \omega^{2}\langle n| \hat{x}^{2}|n\rangle \\
\langle V\rangle=\left(\frac{\hbar}{2 m \omega}\right) \frac{1}{2} m \omega^{2}\left[\langle n| a_{+} a_{+}|n\rangle+\langle n| a_{+} a_{-}|n\rangle+\langle n| a_{-} a_{+}|n\rangle+\langle n| a_{-} a_{-}|n\rangle\right]
\end{gathered}
$$

yielding

$$
\langle V\rangle=\frac{h \omega}{4}[n+n+1]=\frac{\hbar \omega}{2}\left(n+\frac{1}{2}\right)
$$

It is important to not get totally embroiled in the equations and neglect the chemistry and physics. Accordingly, we should ask the question as to the physical significance of this formula?

