PRINCIPLES OF QUANTUM MECHANICS (cont'd)

COMMUTATORS

Order counts when applying multiple operators!
e.g. $\hat{A}=\hat{p} \hat{x}=$? and can we write $\hat{p} \hat{x}=\hat{x} \hat{p}$?

$$
\Rightarrow \quad \text { operate on function to obtain }
$$

$$
\begin{aligned}
& \hat{A} f(x)=g(x) \Rightarrow(\hat{p} \hat{x}) f(x)=\left(-i \hbar \frac{d}{d x}\right)(x) f(x) \\
& =-i \hbar x \frac{d}{d x} f(x)-i \hbar f(x)=\left(-i \hbar x \frac{d}{d x}-i \hbar\right) f(x) \\
& \therefore \quad \hat{A}=\left(-i \hbar x \frac{d}{d x}-i \hbar\right)=(\hat{p} \hat{x})
\end{aligned}
$$

Now try $\hat{B}=\hat{x} \hat{p}$

$$
\begin{aligned}
& \hat{B} f(x)=(x)\left(-i \hbar \frac{d}{d x}\right) f(x)=\left(-i \hbar x \frac{d}{d x}\right) f(x) \\
& \therefore \quad \hat{B}=-i \hbar x \frac{d}{d x}=\hat{x} \hat{p} \\
& \therefore \quad \hat{x} \hat{p} \neq \hat{p} \hat{x}
\end{aligned}
$$

Define commutator
For two operators \hat{A} and \hat{B},

$$
[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}=\hat{C}
$$

e.g.

$$
[\hat{x}, \hat{p}]=\hat{x} \hat{p}-\hat{p} \hat{x}=i \hbar \neq 0!
$$

Important general statements about commutators:

1) For operators that commute

$$
[\hat{A}, \hat{B}]=0
$$

- it is possible to find a set of wavefunctions that are eigenfunctions of both operators simultaneously.
e.g. can find wavefunctions ψ_{n} such that

$$
\hat{A} \psi_{n}=a_{n} \psi_{n} \quad \underline{\text { and }} \quad \hat{B} \psi_{n}=b_{n} \psi_{n}
$$

- This means that we can know the exact values of both observables A and B simultaneously (no uncertainty limitation).

2) For operators that do not commute

$$
[\hat{A}, \hat{B}] \neq 0
$$

- it is not possible to find a set of wavefunctions that are simultaneous eigenfunctions of both operators.
- This means that we cannot know the exact values of both observables A and B simultaneously $\quad \Rightarrow$ uncertainty!

$$
\text { e.g. }[\hat{x}, \hat{p}]=i \hbar \neq 0 \quad \Rightarrow \quad \Delta x \Delta p \geq \frac{\hbar}{2}
$$

