THE POSTULATES OF QUANTUM MECHANICS

(time-independent)
Postulate 1: The state of a system is completely described by a wavefunction $\psi(\mathbf{r}, t)$.

Postulate 2: All measurable quantities (observables) are described by Hermitian linear operators.

Postulate 3: The only values that are obtained in a measurement of an observable " A " are the eigenvalues " a_{n} " of the corresponding operator " \hat{A} ". The measurement changes the state of the system to the eigenfunction of \hat{A} with eigenvalue a_{n}.

Postulate 4: If a system is described by a normalized wavefunction ψ, then the average value of an observable corresponding to \hat{A} is

$$
\langle a\rangle=\int \psi * \hat{A} \psi d \tau
$$

Implications and elaborations on Postulates

\#1] (a) The physically relevant quantity is $|\psi|^{2}$

$$
\begin{aligned}
\psi^{*}(\mathbf{r}, t) \psi(\mathbf{r}, t)=|\psi(\mathbf{r}, t)|^{2} \quad \equiv & \begin{array}{l}
\text { probability density at time } t \\
\\
\\
\text { and position } \mathbf{r}
\end{array}
\end{aligned}
$$

(b) $\quad \psi(\mathbf{r}, t)$ must be normalized

$$
\int \psi^{*} \psi d \tau=1
$$

(c) $\psi(\mathbf{r}, t)$ must be well behaved
(i) Single valued
(ii) ψ and ψ^{\prime} continuous
(iii) Finite
\#2] (a) Example: Particle in a box eigenfunctions of \hat{H}

$$
\hat{H}(x) \psi_{n}(x)=E_{n} \psi_{n}(x) \quad \psi_{n}(x)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)
$$

But if ψ is not an eigenfunction of the operator, then the statement is not true.
e.g. $\psi_{n}(x)$ above with momentum operator

$$
\begin{aligned}
& \hat{p}_{n} \psi_{n}(x)=-i \hbar \frac{d}{d x} \psi_{n}(x)=-i \hbar \frac{d}{d x}\left[\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)\right] \\
& \neq p_{n}\left[\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)\right]
\end{aligned}
$$

(b) In order to create a Q.M. operator from a classical observable, use $\hat{x}=x$ and $\hat{p}_{x}=-i \hbar \frac{d}{d x}$ and replace in classical expression.
e.g.

$$
\begin{align*}
\text { K.E. }=\frac{1}{2 m} \hat{p}^{2}=\frac{1}{2 m}(\hat{p})(\hat{p}) & =-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \tag{1D}\\
& =-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \tag{3D}
\end{align*}
$$

Another 3D example: Angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$

$$
\begin{aligned}
& l_{x}=y p_{z}-z p_{y}=-i \hbar\left(y \frac{d}{d z}-z \frac{d}{d y}\right) \\
& l_{y}=z p_{x}-x p_{z}=-i \hbar\left(z \frac{d}{d x}-x \frac{d}{d z}\right) \\
& l_{z}=x p_{y}-y p_{x}=-i \hbar\left(x \frac{d}{d y}-y \frac{d}{d x}\right)
\end{aligned}
$$

(c) Linear means

$$
\begin{aligned}
& \hat{A}[f(x)+g(x)]=\hat{A} f(x)+\hat{A} g(x) \quad \text { and } \\
& \hat{A}[c f(x)]=c \hat{A}[f(x)]
\end{aligned}
$$

(d) Hermitian means that

$$
\int \psi_{1}^{*} \hat{A} \psi_{2} d \tau=\int \psi_{2}\left(\hat{A} \psi_{1}\right)^{*} d \tau
$$

and implies that the eigenvalues of \hat{A} are real. This is important!! Observables should be represented as real numbers.

Proof: Take $\hat{A} \psi=a \psi$

$$
\begin{aligned}
& \int \psi^{*}(\hat{A} \psi) d \tau=\int \psi(\hat{A} \psi)^{*} d \tau \\
& \int \psi^{*} a \psi d \tau=\int \psi(a \psi)^{*} d \tau \\
& \Rightarrow \quad a=a^{*}
\end{aligned}
$$

true only if a is real
(e) Eigenfunctions of Hermitian operators are orthogonal
i.e. if $\quad \hat{A} \psi_{m}=a_{m} \psi_{m}$ and $\hat{A} \psi_{n}=a_{n} \psi_{n}$

$$
\text { then } \int \psi_{m}^{*} \psi_{n} d \tau=0 \quad \text { if } m \neq n
$$

Proof:

$$
\begin{aligned}
& \int \psi_{m}^{*} \hat{A} \psi_{n} d \tau=\int \psi_{n}\left(\hat{A} \psi_{m}\right)^{*} d \tau \\
& a_{n} \int \psi_{m}^{*} \psi_{n} d \tau=a_{m}^{*} \int \psi_{n} \psi_{m}^{*} d \tau \\
& \Rightarrow \quad\left(a_{n}-a_{m}^{*}\right) \int \psi_{m}^{*} \psi_{n} d \tau=0 \\
& \left(a_{n}-a_{m}^{*}\right) \int \psi_{m}^{*} \psi_{n} d \tau=0 \\
& \underbrace{}_{=0 \text { if }} \underbrace{}_{=0} \text { if } n \neq m \\
& n=m
\end{aligned}
$$

Example: Particle in a box

In addition, if eigenfunctions of \hat{A} are normalized, then they are orthonormal

$$
\int \psi_{m}^{*} \psi_{n} d \tau=\delta_{m n}
$$

$$
\delta_{m n}=\left\{\begin{array}{lll}
1 & \text { if } m=n & \text { (normalization) } \\
0 & \text { if } m \neq n & \text { (orthogonality) }
\end{array}\right.
$$

\#3] If ψ is an eigenfunction of the operator, then it's easy, e.g.

$$
\hat{H} \psi_{n}=E_{n} \psi_{n} \quad \text { measurement of energy yields value }
$$

But what if ψ is not an eigenfunction of the operator?
e.g. ψ could be a superposition of eigenfunctions

$$
\psi=c_{1} \phi_{1}+c_{2} \phi_{2}
$$

where

$$
\hat{A} \phi_{1}=a_{1} \phi_{1} \quad \text { and } \quad \hat{A} \phi_{2}=a_{2} \phi_{2}
$$

Then a measurement of A returns either a_{1} or a_{2}, with probability c_{1}^{2} or c_{2}^{2} respectively, and making the measurement changes the state to either ϕ_{1} or ϕ_{2}.

\#4] This connects to the expectation value
(i) If ψ_{n} is an eigenfunction of \hat{A}, then $\hat{A} \psi_{n}=a_{n} \psi_{n}$

$$
\langle a\rangle=\int \psi_{n}^{*} \hat{A} \psi_{n} d \tau=a_{n} \int \psi_{n}^{*} \psi_{n} d \tau=a_{n}
$$

$\langle a\rangle=a_{n} \quad$ only value possible
(ii) If $\psi=c_{1} \phi_{1}+c_{2} \phi_{2}$ as above

$$
\begin{gathered}
\langle a\rangle=\int \psi^{*} \hat{A} \psi d \tau=\int\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)^{*} \hat{A}\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) d \tau=c_{1}^{2} a_{1}+c_{2}^{2} a_{2} \\
c_{1}^{2} \text { is the probability of measuring } a_{1}
\end{gathered}
$$

$\langle a\rangle=$ average of possible values weighted by their probabilities

