MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Math Review
Differentiation

$$
\begin{aligned}
& d f=\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y \quad \text { and } f f z=z(x, y) \\
& \left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} \\
& \left(\frac{\partial x}{\partial y}\right)_{z}=\frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \\
& \left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} \quad \text { or } \quad\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
\end{aligned}
$$

If $d f=g d x+h d y$ is exact then

$$
\left(\frac{\partial g}{\partial y}\right)_{x}=\left(\frac{\partial h}{\partial x}\right)_{y}
$$

Examples:
$\frac{d}{d x} x^{y}=r x^{p-1}$
$\frac{d}{d x} e^{[x}=3 e^{3 x}$
$\frac{d}{d x} e^{0 x^{2}}=d x e^{\mathrm{D} x^{2}}$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$
$\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}$
Sum Rule:
$\frac{d}{d x}(5 f+3 g)=5 \frac{d f}{d x}+3 \frac{d g}{d x} \quad f=f(x) ; g=g(x)$
Product Rule:
$\frac{d}{d x} f=\frac{d}{d x}+\pi \frac{d g}{d x}$
Quotient Rule:

$$
\frac{d}{d x}\left(\frac{f}{a}\right)=\frac{\frac{d f}{d i}-f \frac{d g}{d x}}{g^{2}}
$$

Integration

Most common integrals:
$\int_{a}^{b} \frac{1}{x} d x=\ln \left(\frac{b}{a}\right)$
$\int_{a}^{b} \frac{1}{x^{2}} d x--\left.\frac{1}{x}\right|_{a} ^{b}-\frac{1}{a}-\frac{1}{b}$
$\int_{-1}^{b} x a^{2} x=\left.\frac{1}{2} x^{2}\right|_{a} ^{b}=\frac{1}{2\left(b^{2}-a^{2}\right)}$
$\left.\int_{a}^{b} e^{3 x} d x=\left.\frac{1}{3} e^{5 x}\right|_{a} ^{b}=-\frac{1}{3\left(e^{-3 b}\right.}-e^{5 a}\right)$
Quadratic Equation: solving for \mathbf{x}
$a x^{2}+b x+c=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
\rightarrow Simplifications (kinetics, equilibrium problems)
The quadratic equation shows up in kinetics questions and equilibrium questions. Typically, it is not required to solve the quadratic equation IF X IS SMALL.

Example:
$\frac{x^{2}}{(a-x)(b-x)}=d$
If x is assumed to be small, then,
$\frac{x^{2}}{(a)(b)}=d$
If the answer is small for x , then it is ok. If x turns out to be pretty big (0.4) then use the quadratic formulae!

Taylor Expansions: when x is small (especially in kinetics questions!)
$e^{x}=1+\frac{x}{11}+\frac{x^{2}}{2 I}+\frac{x^{8}}{3!}+\cdots, \quad-\infty<x \cos$
$\ln (x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{5}-\frac{1}{4} x^{4}+\cdots$
For $\mathrm{x}<1$

Partial Fractions

Example:
$\frac{x-1}{(3 x-8)(x-9)}=\frac{A}{3 x-3}+\frac{B}{x-3}$
Multiply by denominator everywhere:
$\frac{(x-1)(8 x-5)(x-9)}{(3 x-5)(x-8)}=\frac{A(3 x-5)(x-9)}{3 x-3}+\frac{B(3 x-5)(x-3)}{x-3}$
Simplify:
$x-1=A(x-3)+B(3 x-5)$
Solve by setting values for x :
Let $\mathrm{x}=3 ; 2=\mathrm{A}(0)+\mathrm{B}(4) \rightarrow \mathrm{B}=0.5$
Let $\mathrm{x}=0 ;-1=\mathrm{A}(-3)+0.5(-5) \rightarrow \mathrm{A}=-0.5$
Final Answer:
$\frac{x-1}{(3 x-5)(x-3)}=\frac{-0.5}{3 x-5}+0 \cdot \frac{5}{x-3}=\frac{-1}{2(3 x-5)}+\frac{1}{2(x-3)}$

Math Tricks:

$\ln a-\ln b=\ln \left(\frac{a}{b}\right)$
*when you have to equations in terms of \ln, subtract the equations from each other and use the trick

Example:
$\ln \left(p_{1}\right)=-\frac{3000}{T}+13.1 \quad \ln \left(p_{2}\right)=-\frac{4000}{T}+16.4 \quad$ given $\frac{p_{2}}{p_{2}}=1 \quad * *($ what point is this?)

To solve for T and you are given the ratio of the pressures, subtract the equations:

$$
\begin{aligned}
& \ln \left(p_{1}\right)=\frac{3000}{T} 113.1 \\
& -\ln \left(p_{2}\right)=-\frac{4000}{T}+16.4 \\
& \ln \left(\frac{p_{1}}{p_{2}}\right)=-\frac{3000}{T}+13.1-\left(-\frac{4000}{T}+16.4\right)
\end{aligned}
$$

$$
\ln x y=\ln x+\ln y
$$

$$
\delta\left(\frac{1}{p}\right)=-\frac{1}{p^{2}} \partial p
$$

$$
\frac{1}{p} \partial p=\partial t r p
$$

$$
\mathbf{e}^{a^{a} \mathbf{e}^{b}-e^{a+b}}
$$

