\qquad

Pre-Lab Day 5/6

Consider the following hypothetical reaction between the species $\mathrm{A}(a q)$ and $\mathrm{B}(a q)$ to yield $\mathrm{AB}_{2}(a q)$:

$$
\mathrm{A}(a q)+2 \mathrm{~B}(a q) \longrightarrow \mathrm{AB}_{2}(a q)
$$

Using the isolation method, it is found that the rate law is second order in $\mathrm{A}(\mathrm{aq})$, first order in $\mathrm{B}(\mathrm{aq})$, and third order overall. When 30.00 mL of $0.600 \mathrm{M} \mathrm{A}(\mathrm{aq})$ is combined with 20.00 mL of $0.500 \mathrm{M} \mathrm{B}(\mathrm{aq})$ at $25.0^{\circ} \mathrm{C}$, the initial rate of reaction is found to be $1.94 \times 10^{-6} \mathrm{M} / \mathrm{s}$. When 20.00 mL of $0.600 \mathrm{M} \mathrm{A}(\mathrm{aq})$ is combined with 30.00 mL of $0.500 \mathrm{M} \mathrm{B}(\mathrm{aq})$ at $50.0^{\circ} \mathrm{C}$, the initial rate of reaction is found to be 6.52×10^{-6} M / s. As always, assume that all aqueous solution volumes are additive and that ionic strength was constant.
(a) Determine the rate constant of this reaction (in units of M and s) at each temperature $\left(25.0^{\circ} \mathrm{C}\right.$ \& $50.0^{\circ} \mathrm{C}$) and also determine the activation energy of this reaction (in kcal per mole of $\mathrm{A}(a q)$). Show all work.
(b) Clearly state any assumptions that had to be made in order to successfully carry out any of the computations in (a).

MIT OpenCourseWare
http://ocw.mit.edu

5.35 / 5.35U Introduction to Experimental Chemistry

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

