WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any material presented. Legal Notice

Appendix 1

Density Functional Theory Calculation of Isotropic Fermi Contact Couplings of Alkyl Semibenzoquinones

(Courtesy of Dr. Mircea Gheorghiu. Used with permission.)

This appendix describes the use of Gaussian 98W software for running Density Functional Theory (DFT) calculations of hyperfine coupling constants (the isotropic Fermi contact couplings) for alkyl substituted semibenzoquinones. This appendix describes the building of the semibenzoquinones molecules for the Gaussian 98W input file, the running of the calculation, and reading of the output file.

1. Building Alkyl Semibenzoquinone Structures

The Gaussian 98W DFT calculation requires an initial structure that is contained in Cartesian coordinates in an input file. The structure can be built interactively with the GaussView, which saves the input file. To start GaussView, click on "Shortcut to gview."

In GaussView, there are three windows design to assist you in building the geometry for the input file: (i) **GaussView 2.1**, (ii) **Builder** and (iii) **View1** (see Fig.1).

Vicule to Calassiew	Fie Edt	v 2.1 View <u>C</u> alculate <u>R</u> esults <u>Windows</u>	
Help Build Select Placement	Welcome Builder X Element Ø -R Rings -R Group Comer Comer Add Delete Atom New Center Rebond Clean Help	View 1: New	Build Select Placement

Screenshot images courtesy of Gaussian, Inc. Used with permission.

First, let us build the semi-benzoquinone:

1. Click on the Ø Rings button in the Builder window and the larger fragment button directly beneath it. The Select Ring Fragment screen will appear. Select the benzene ring.

- 2. Put the mouse arrow on the View1 surface and right-click. If necessary, drag the ring to center using Shift-Left button.
- 3. Click View (GaussView 2.1) and click Labels. All atoms become numbered (see below).
- Add the oxygen atoms. Double click on the Element button (Builder). Select Element table will pop-up. Click on "O". Click on any hydrogen from the benzene ring, an OH will be inserted. Click on the hydrogen from the *para* position. A second OH will be attached.

5. Click on **Delete Atom** button (**Builder**) and delete the two hydrogen atoms attached to the **OH** groups.

Cick on File (GaussView 2.1), than on Save.... Save the file in d:/GaussView/5.33 directory.

	🔁 Save Gauss	ian Input File			×
Q	Look <u>i</u> n: d:/5_3	3	•	£	
4				_	
) edr	File <u>N</u> ame:	semibenzoquinone			Save
	Show File <u>T</u> ype:	*.gif		•	Cancel
elet	Save File <u>A</u> s:	Auto			<u>H</u> elp
_	🔲 Write Cartesi	an Coordinates 🔲 Append Extra Com Data			
er 1					

2. Calculation of Spin-Density of Alkylsemiquinones by DFT

Now you have created the starting structure for the calculation. Now enter the setup to set the calculation parameters and define the level of theory used.

1. Click on Calculate (GaussView 2.1), then on Gaussian. Gaussian Calculation Setup window will appear.

Screenshot images courtesy of Gaussian, Inc. Used with permission.

Coursian Colouistion Setup	
Linkf Commands:	
%chk= %chk= %mem=5MW %nproc=1	semiquinone with ub3lyp/epr_II Charge = 1 Spin: Doublet V
Job Type:	Method:
Optimization 💷	Multilayer ONIOM Model
	Ground State - B3LYP - Unrestricted -
Calculate force constants, initially	Basis Set: 3-216 = = (= , =)
Use GDIIS	
Use tight convergence criteria	
Locate transition state	
Solvation:	General Options:
None 🖃	🗖 Mix HOMO &LUMO in initial guess 🔲 Additional Print
	Read Initial Guess from Checkpoint Ignore Symmetry
	Use Quadratically Convergent SCF 🗖 Write Connectivity
Additional Keywords: density=current	
Submit Cancel Edi	t <u>D</u> efaults <u>H</u> elp

- 2. In **Title** window type the a **Name for your job**.
- 3. Change Charge to -1 and Spin to doublet.
- 4. The Job type is optimization.
- 5. In Method choose unrestricted B3LYP. Leave the Basis Set as 3-21G. It will be edited latter to epr-II (this latter basis set is not an option available from this window).
- 6. **Solvation** should be **None**.
- 7. In General Options leave all boxes unchecked.
- 8. In Additional, add the keywords density=current.
- 9. Now we want to make extra changes to the input file, which is being written with these parameters. Click on edit... button. Save the file in d:/5.33 directory.
- 10. A notepad file will pop-up. Now is time for the final editing:

%mem=6HW %nproc=1 %chk=semibenzoquinone.chk #T opt ub31yp/epr-II density=current semiguinone with ub31up/epr II									
	adarnone uren aboryptep.								
-1	2								
C									
L C	1	81							
L C	2	82	1	81					
L C	3	83	2	H2	1	D1			
L C	4	84	3	H3	2	02			
L C	1	85	2	A4	3	D3			
H	1	BO	2	A5	3	04			
H	2	87	1	A6	6	D5			
H	4	88	3	A7	2	D6			
н	5	RA	4	A8	3	D7			
U	3	810	2	AY	1	08			
U	6	811	1	A10	2	DY			
	B1 1.395160								
	B2 1.394712								
	B3 1.395427								
	B4 1.394825								
	B5 1.394829								
	B6 1.099610								
	B7 1.099655								
	B8 1.099680								
	B9 1.099761								
	B10 1.430000								

Screenshot images courtesy of Gaussian, Inc. Used with permission.

- 11. Type a "T" after the pound sign to make **#T** instead of **#** (**T** is keyword for terse printing).
- 12. Replace ub3lyp/3-21g (or any other basis set) with ub3lyp/epr-II.

For the time being, please ignore the first three lines. For the time being, the first significant is the fourth line, the so-called route line, which begins with the keyword "#". Here "T" is keyword for terse output printing. The keyword "opt" requests optimization of the geometry of molecule. Electronic structure of the radicals (open shell system) are calculated in the unrestricted model (α electrons and β electrons are handled separately). The keyword "u" prepending the method keyword, requests open shell calculation. The method of calculation, density functional theory, is "b3lyp" that stands for Bethe-style-3 parameter DFT using the Lee-Yang-Parr correlation functional. The keyword for the basis set used in the calculation is "epr-II". This basis set was designed by Barone¹ and are optimize for the computation of the <u>hyperfine coupling constants</u> by DFT methods. Other keywords will be available consulting the main reference that will be on the computer Table.

13. Save the file (File) and Exit.14. The RunGaussian window appear. Click on Okay button.

Daxis	эн.	3-21u	_
🚍 Run Gaussia	n		×
Submit the followin	ig file to	Gaussia	n? 📘
d:/5_33/semiben	zoquino	ne.gjf	
<u>O</u> kay	<u> </u>	ancel	

The calculation will start immediately. To complete the run, it takes ca. 30 minutes for semibenzoquinone, XX minutes for methyl- semibenzoquinone and XX minutes for t-butyl-semibenzoquinone. Budget your time wisely. Sign up for calculation as early as possible.

3. The Output File

The output (or LOG) file for the b3lyp/epr-II calculation will provide you with the isotropic Fermi contact couplings. This file should be saved with the same name as your input file with a .LOG extension. In the figure below is an example of the semi-

¹ Barone, V. in *Recent Advances in Density Functional Methods, Part I,* Chong, D. P., Ed., World Scientific Publ. Co.: Singapore, 1966.

benzoquinone output file. The couplings are found in column 5 in values of Gauss. Here, because all hydrogens are equivalent (group D_{2h}), the coupling constant value is equal at -2.39 Gauss. Also information regarding the optimized geometry of the anion radical is also available.

8	н	- 0	.005466										
9	н	- 0	.005466										
10	н	- 0	.005466										
11	0	0	.267132										
12	0	0	.267132										
Sum	of	Mul:	liken sp:	in dens	ities=	1.0	00000						
				Iso	tropic	Fermi	i Con	tact	Coupl	ings			
	At	om			a.u.	Þ	1egaH	ertz		Gauss	10(-4	4) cm-1	
1	C	(13)		- 0	.00895	-	-10.0	6469		-3.59133	-3	35722	
2	C	(13)		- 0	.00895	-	-10.0	6469		-3.59133	-3.	35722	
3	C	(13)		- 0	.00042		-0.4	7199		-0.16842	- 0	15744	
4	C	(13)		- 0	.00042		-0.4	7199		-0.16842	- 0	15744	
5	C	(13)		- 0	.00042		-0.4	7199		-0.16842	- 8	15744	
6	C	(13)		- 0	.00042		-0.4	7199		-0.16842	- 8	.15744	
7	н	• •		- 0	.00150		-6.7	0772		-2.39348	-2	23746	
8	н			- 0	.00150		-6.7	0772		-2.39348	-2	23746	
9	н			- 0	.00150		-6.7	0772		-2.39348	-2	23746	
10	н			- 0	.00150		-6.7	0772		-2.39348	-2	23746	
11	0	(17)		0	.03559	-	-21.5	7329		-7.69789	-7	19607	
12	0	(17)		0	.03559	-	-21.5	7329		-7.69789	-7.	19607	
Ele	etri	onić	spatial	extent	(au):	<r**< td=""><td>€2>=</td><td>919</td><td>.8729</td><td>1</td><td></td><td></td><td></td></r**<>	€2>=	919	.8729	1			
Chai	rge:	-	-1.0000	electr	ons								
Dip	oĩe	mom	ent (Debi	ue):									
	x =		0.0000	Ý=	0.000	0	Z=	0.	0000	Tot=	0.0000		
Tesi 1 1 0PT ,1.4 012 4 H	t j UN 83 475 180 ,-2	0b n PC-U LYP/ 6360 04 C .163	ot archiv NK FOpt EPR-II T 312 C,-1 ,1.22998 6857208,	ved. JB3LYP EST se .229989 96255,0 0.,-1.2	EPR-II miquind 6255,0. .,0.690 5240168	C6H4(ne - ,-0.0)1218(;12 H,)2(1- -1,2 59012 904 C ,2.16	,2) P C,0., 18004 ,-1.2 36857	CUSER 0.,-1 C,1. 29989 208,0	18-Jul-2 .47563603 229989625 6255,0.,0 .,-1.2524	001 0 4 12 C,0., 5,0.,-0 .6901218 016812	#T ,0. .69 300 1,2	

All calculations in **Gaussian98W** end with a proverb. Here is a superb sample:

X=	0.0000	Υ=	0.0000	Z=	0.0000	Tot=	0.0000	
Test job 1 1 UNPC- T OPT UHI ,0.,0.,1 ,-0.67893 9778898 43 H,2.1 ⁴ ,0.,-2.7 ate=2-B2(-009 RMSI]@	not archiu -UNK FOpt U F/6-31G(D', .4604035694 778898 C,1. H,-2.144384 443845546,0 022086323 0 G HF=-379.2 F=6.785e-00	ved. JHF 6-31) ,P') TES 4 C,-1.2 ,2155747 5546,0 3,1.232 0,0,0 ,2 (645278] 35 Dipole	(d',p') C([semiqui 155747109, 109,0.,0.č 3017043 H, 2.70220865 52=0.84467 2=0.,0.,0.	6H402(1– 100ne - 10.,-0.6 17897788 17043 H, 17043 H, 12.1443 23 Ver 17 \$2–1= 1PG=D02	,2) PCUS 1,2 C,0. 78977889 98 C,-1. 2.144384 845546,0 sion=x86 0. S2A=0 H [C2"(0	ER 18-Jul ,0.,-1.46 8 C,1.215 2546,0.,- .,1.23230 -Win32-G9 .752811 R 1C1.C101)	-2001 0 # 04035694 C 5747109,0. 9,0.,0.678 1.23230170 17043 0,0. 8RevA.9 St MSD=9.507e ,SG(C4H4)]	
I HAVE NO WAYS THAT Job cpu f File leng Normal to	DT FAILED, T DIDN'T WO time: 0 da gths (MByte ermination	I HAVE (DRK Dys 0 ho es): RWI of Gauss	DNLY DISCO THOMAS A. Durs 3 mi F= 22 Ir Sian 98.	OVERED 1 EDISON Inutes 4 It= 0	0,000 8.0 seco D2E=	nds. Ø Chk=	4 Scr=	1

Table. The calculated hyperfine coupling constant, $a_{\rm H}$, (in gauss), according to equation 10 and your data.

Benzosemiquinone		
R is the substituent	DTF: B3LYP/EPR-II	Your data
R=H		
H ₂		
R=Me		
H_2		
H ₃		
${ m H_4}$		
average CH ₃		

Benzosemiquinone		
R is the substituent	DTF: B3LYP/EPR-II	Your data
R= isopropyl		
H_2		
H ₃		
${ m H}_4$		
СН		
average CH ₃		