Massachusetts Institute of Technology Organic Chemistry 5.13

Friday, September 30, 2005

Prof. Timothy F. Jamison

		Hour Exam #	1
Name			
	(please both print and si	gn your name)	
<u>Official</u> Re	ecitation Instructor		
Directions	: Closed book ex	am, no books,	notebooks, notes, etc. allowed.
However, o	calculators, rulers, and	molecular mod	del sets are permitted.
Please rea	d through the entire ex	кат before beg	inning, in order to make sure that
you have a	all the pages and in ord	ler to gauge the	e relative difficulty of each
question. I	Budget your time acco	rdingly.	
Show all c	of your work if you wi	ish to receive	partial credit.
You should	d have 11 pages total:	6 exam pages	including this page, 3 pages of
reference i	nformation, and 2 blan	k pages for scr	atchwork.
	Question:		Grader:
	1/	40 points	
	2/	30 points	
	3/	30 points	
	Total:/	100 points	

1. (40 points total – 5 points each) The molecular formulas and ¹H NMR spectra of 8 common organic solvents are provided below and on the following 2 pages. For each, neatly draw the entire structure (i.e., not the acronym) in the box provided. In some cases, relative integration values (circled numbers) and/or other information have been provided.

Note: Do **not** represent functional groups with partial molecular formulas or other abbreviations. For example, do not use "Ph" or " C_6H_5 " for a phenyl group. **Draw** the entire group (including hydrogen atoms).

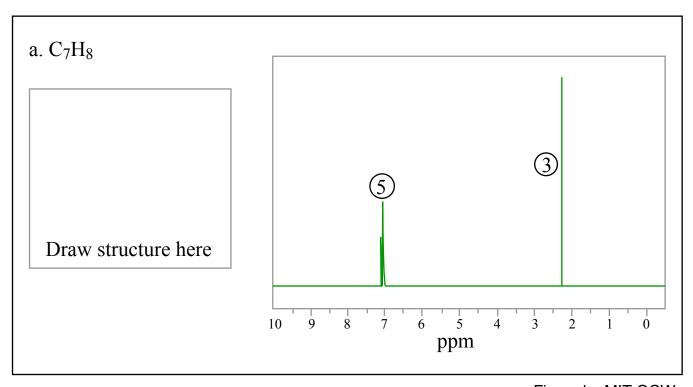


Figure by MIT OCW.

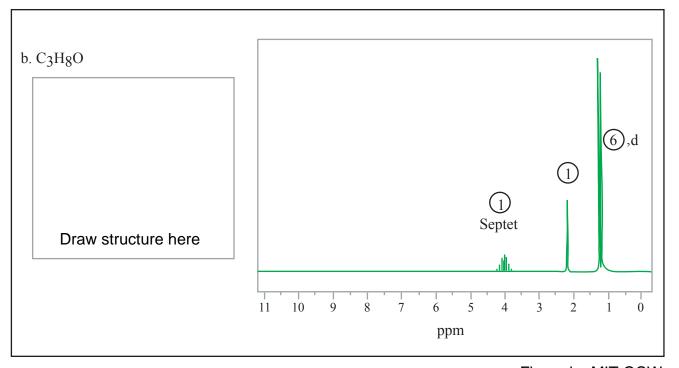


Figure by MIT OCW.

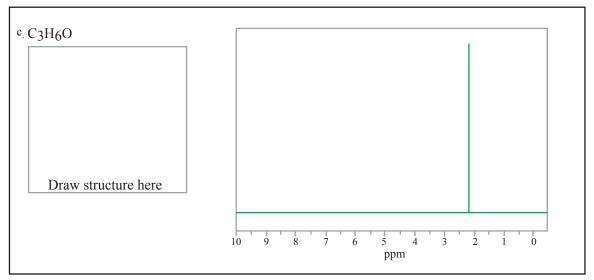


Figure by MIT OCW.

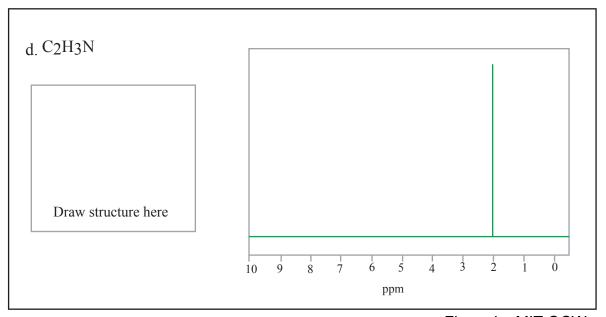


Figure by MIT OCW.

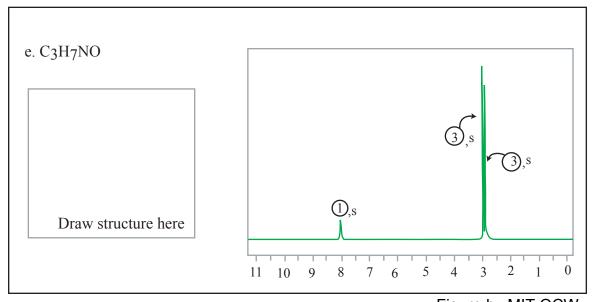


Figure by MIT OCW.

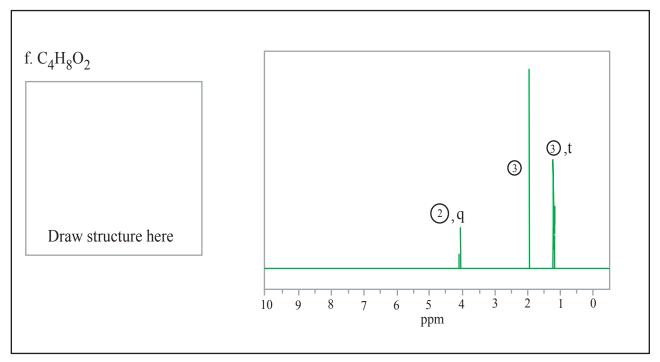


Figure by MIT OCW.

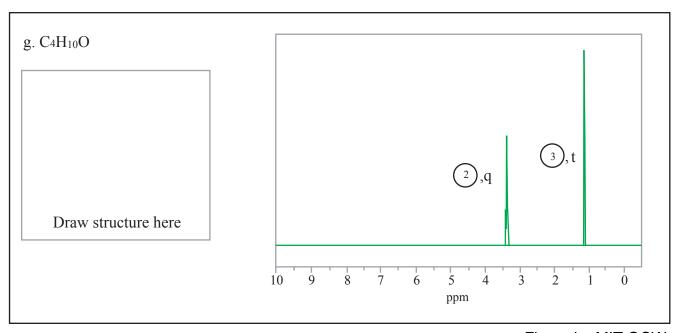


Figure by MIT OCW.

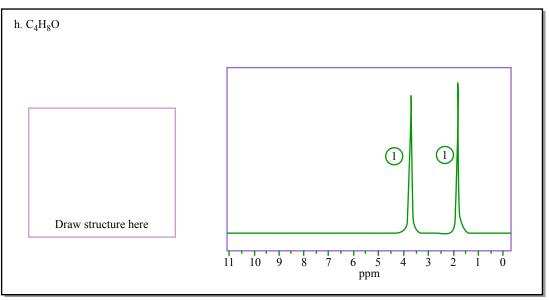


Figure by MIT OCW.

4

2.	(30 points total) Answer the o	guestions below	about the structure	that has the	following data:
	too poilito total	<i>, ,</i>		about the othertare	tilatilae tile	ionowing data.

EA C, 81.61; H, 11.06; N, 7.32

MS 191, 176.

¹³C NMR 162.7, 136.5, 118.9, 35.1, 31.9

¹H NMR 7.59 (t, J = 7.8, 1H), 7.14 (d, J = 7.8, 2H), 1.34 (s, 18H)

a. (10 points) Determine the molecular formula. Circle your final answer.

b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

c. (2 points) How many "types of carbon" (chemically non-equivalent) does this compound have? **Circle** your final answer.

d. (3 points) How many "types of hydrogen" (chemically non-equivalent) does this compound have? **Circle** your final answer.

e. (10 points) In the space below, draw the structure of the molecule that is consistent with all of the data provided. Circle your final answer.

3. (30 points total) Answer the questions below about the structure that has the following data:

EA C, 75.69; H, 8.80

M⁺ 206

IR 3430 (broad), 1705 (strong)

¹³C NMR 181.4, 140.9, 137.0, 129.5, 127.4, 45.9, 44.1, 30.3, 22.5, 18.2

¹H NMR 11.9 (broad s, 1H), 7.21 (d, J = 7.7, 2H), 7.09 (d, J = 7.7, 2H), 3.70

(q, J = 7.0, 1H), 2.44 (d, J = 6.8, 2H), 1.84 (nonet (9 lines), J = 6.8, 4H), 4.40 (d. J. 20.2H), 2.20 (d. J. 20.2H)

1H), 1.49 (d, J = 7.0, 3H), 0.89 (d, J = 6.8, 6H)

a. (7 points) Determine the molecular formula. Circle your final answer.

b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

c. (8 points) Which protons are coupled to which? Complete the tables below using the NMR data above. Write H1, H2, etc. or "none", as appropriate, in the box provided, and list **all protons** to which a given proton is coupled.

Proton(s)	∂ (ppm)	Coupled to
H1	11.9	
H2	7.21	
H3	7.09	
H4	3.70	

Proton(s)	∂ (ppm)	Coupled to
H5	2.44	
H6	1.84	
H7	1.49	
Н8	0.89	

d. (10 points) Draw all of the possible enantiomers and diastereomers of the unknown compound that are consistent with all the data given. Circle your final answers.

e. (**Extra credit** – 5 points total) What is the common name of this over-the-counter pharmaceutical (3 points), and for which symptoms is it indicated (2 points)?

Infrared Spectra: Tables of Reference

X-H Region

Phenols and Alcohols	ROH	3700-3500 sharp or 3200-3600 broad(H-bonded)
Acids	RCO ₂ H	2800-3600 very broad
Amides and Amines	RCONHR R ₂ NH	3300-3500
C-H bonds	C≡C-H C=C-H C-C-H RCHO	3100-3300 3000-3200 2850-3000 2700-2800

sp Region

Acetylenes	C≡C	2100	
Nitriles	C≡N	2200	
Ketenes	C=C=O	2150	
Allenes	C=C=C	1950	

Double Bond Region

Alkenes	C=C	1600-1670 weak unless conjugated
Imines	C=N	1600-1700
Nitro	$-NO_2$	1350-1550(two bands)

Carbonyl Groups

Note: subtract ca. 30 cm ⁻¹ for conjugation (e.g. with a double bond or aromatic ring)		Ketones R ₂ C=O		(subtract ca. 3 conjugation)	30 cm ⁻¹ for
Anhydrides RC(O)OCOR	1740-1780, 1800-1840	06	-member 1710	ed and larger cy	yclic ketones
Acid Chlorides RCOCI	(two bands) 1790-1815	~ °	1740		1680
Esters RCO ₂ R	1725-1755	,0	1/40		1715
Acids RCO ₂ H	1700-1725		1780		1740
Amides RCONR ₂	1630-1700		1770		
Urethanes R_2NCO_2R	1700	0		NR	1690-1740
Aldehydes RCHO	1720-1740	0	1730	NR	1650

Figure by MIT OCW.

¹H NMR Spectra: Tables of Reference

Average Chemical Shifts (δ) of α -Hydrogens in Substituted Alkanes*

X	CH ₃ X	RCH ₂ X	R ₂ CHX
Н	0.233	0.9	1.25
CH ₃ or CH ₂	0.9	1.25	1.5
F	4.26	4.4	<u> </u>
Cl	3.05	3.4	4.0
Br	2.68	3.3	4.1
I	2.16	3.2	4.2
ОН	3.47	3.6	3.6
OR	3.3	3.4	<u> </u>
OAr	3.7	3.9	
OCOR	3.6	4.1	5.0
OCORAr	3.8	4.2	5.1
SH	2.44	2.7	
SR	2.1	2.5	
SOR	2.5		2.8
SO_2R	2.8	2.9	3.1
NR_2	2.2	2.6	2.9
NR-Ar	2.9		<u> </u>
NCOR	2.8		3.2
NO_2	4.28	4.4	4.7
СНО	2.20	2.3	2.4
COR	2.1	2.4	2.5
COAr	2.6	3.0	3.4
COOH	2.07	2.3	2.6
COOR	2.1	2.3	2.6
CONH ₂	2.02	2.2	
CR=CRCR ¹	2.0-1.6	2.3	2.6
Phenyl	2.3	2.7	2.9
Aryl §	3.0-2.5		_
C≡CR	2.0		
C≡CN	2.0	2.3	2.7

^{*} The tabulated values are average values for compounds that do not contain another functional group within two carbon atoms from the indicated hydrogens.

Chemical Shifts of Hydrogens Bonded to Unsaturated Centers

Туре	Unconjugated	Conjugated*	
R ₂ C=CH ₂	4.6-5.0	5.4-7.0	
R ₂ C=CHR	5.0-5.7	5.7-7.3	
Aromatic	6.5-8.3		
Nonbenzenoid aromatic	6.2-9.0		
Acetylenic	2.3-2.7	2.7-3.2	
Aldehydic	9.8-9.8	9.5-10.1	
R ₂ NCHO	7.9-8.1		
ROCHO	8.0-8.2		

^{*} The position depends on the type of functional group in conjugation with the unsaturated group.

Chemical Shifts of Hydrogen Bonded to Oxygen, Nitrogen, and Sulfer

Functional Group		Chemical Shift, δ	
ОН	Akohols	0.5 0.5-5	(Monomeric) (Associated)
	Phenols	4.5 4.5-8	(Monomeric) (Associated)
	Enols	15.5	, ,
	RCO₂H	9-12	(Dimeric)
	H-bonded to C=O	13-16	
NH ₂	Alkylamine	0.6-1.6	
	Arylamine	2.7-4.0	
	Amide	7.8	
NH	Alkylamine,	0.3-0.5	
	Arylamine	2.7-2.8	
R ₃ NH ⁺	Ammonium salts	7.1-7.7	(in CF ₃ COOH)
SH	Aliphatic	1.3-1.7	
	Aromatic	2.5-4	

 $[\]ensuremath{\delta}$ Includes polycyclle and many heterocyclic aromatics.

Characteristic Functional Group Chemical Shifts In ¹³C NMR (ppm)

Alkanes		Organohalogen	
Methyl (RCH ₃)	0-30	C-F	70-80
Methylene (RCH ₂ R')	15-55	C-Cl	25-50
Methine (RCH(R')(R"))	25-55	C - Br	10-40
Quaternary (RC(R')(R")(R"'))	30-40	C-I	-20-10
Alkanes	100-150	Ketones, Aldehydes	185-220
Aromatic	120-160	Carboxyl Derivatives	
Alkynes	70-90	Acids	150-185
Nitriles	110-125	Esters	155-180
Alcohol, Ethers	50-90	Amides	150-180
Amines	40-60	Carbamates	150-160

Figure by MIT OCW.