Massachusetts Institute of Technology Organic Chemistry 5.13

Wednesday, October 26, 2005

Prof. Timothy F. Jamison

		Hour Exam #2 SO	LUTIONS
Name			
	(please both print and s	sign your name)	
Official Re	citation Instructor		
Directions	: Closed book	exam, no books, notei	books, notes, etc. allowed.
Calculators	are not permitted fo	r this exam. However,	rulers and molecular model
sets are pe	rmitted.		
you have		in order to gauge the	, in order to make sure that relative difficulty of each
Show all o	f your work if you w	vish to receive partial	credit. You should have 7
pages total:	5 exam pages inclu	iding this page and 2 bl	ank pages for scratchwork.
	Question:		Grader:
	1/	42 points (page 2)	
	1 <i>I</i>	30 points (page 3)	
	2/	28 points	
	Total: /	100 points	

1. (72 points total, 3points per box) in each box below, draw the structure of the reagent or major product of the reaction, where appropriate. If no reaction occurs, put a large X in the box. *Clearly indicate the double bond geometry and relative stereochemistry* of the major product, where appropriate.

Figure by MIT OCW.

2. (28 points total) In a Nazarov Cyclization (below), treatment of a dienone with a strong Lewis acid effects a thermal 4π electrocyclic ring closure, giving intermediate **A**, and an aqueous workup affords the final product (**B**), the thermodynamically most stable cyclopentenone.

Figure by MIT OCW.

- a. In the diagram below, **draw** the π atomic **orbitals** (by shading the lobes appropriately) that represent the π system of **C** (the precursor to **A**) in the reaction above (2 points each).
- b. Write the number of nodes in the box to the left of each orbital array (1 point each).
- **c.** For the ground state of **C**, draw the **electron population** for each orbital on the line to the right of each orbital array. Clearly indicate whether each electron is "spin up" or "spin down". If there are no electrons in a given orbital, leave the line blank (1 point each).

Figure by MIT OCW.

4. (continued)

d. (4 points each) For the example of the Nazarov cyclization below, in the indicated boxes draw the direct product of the **electrocyclic ring closure** and the **cyclopentenone** final product after the aqueous workup. In both cases, clearly indicate stereochemistry and double bond geometry, as appropriate.

Figure by MIT OCW.