KEY

Massachusetts Institute of Technology

Final Exam

Question 1	/10 points
Question 2	/ 15 points
Question 3	/30 points
Question 4	/10 points
Question 5	/10 points
Question 6	/ 15 points
Question 7	/ 10 points
Question 8	/12 points
Question 9	/ 10 points
Question 10	/12 points
Question 11	/12 points
Question 12	/12 points
Question 13	/12 points
Question 14	/14 points
Question 15	/16 points
TOTAL	/200 points

Name (printed) \qquad
Name (signed) \qquad

There are 18 pages (2-19) of questions in this exam.

1. (10 points total) Write an arrow-pushing mechanism for the reaction below.

Note: Aste risk $(*)={ }^{13} \mathrm{C}$.

Solution must account for ${ }^{13} \mathrm{C}$ in formaldyde, otherwise no more than 5 pts should be awarded.
2. ($\mathbf{1 5}$ points total) Compound \mathbf{A} is prepared from \mathbf{B} and \mathbf{C} and has the spectroscopic data listed below. Draw the structure of \mathbf{A} in the box provided, and write an arrow-pushing mechanism for its formation from \mathbf{B} and \mathbf{C} in the space below.

Figure by MIT OCW.
3. (30 points total, 1 point per box) For the following 15 structures, write the number of chemically non-equivalent (number of "different types") of hydrogens and carbons in the appropriate boxes below. (Be careful to put the numbers in the correct boxes - we can't read your mind, i.e. wrong numbers will receive no credit - no exceptions.)

Figure by MIT OCW.

\# non-equivalent $\mathrm{H} \quad$ \# non-equivalent C

f.

3
g.

h.

i.

j.

Figure by MIT OCW.

Figure by MIT OCW.
4. (10 points) An alcohol (R-OH) was treated with sodium hydride and 1-bromo-2-butyne to give compound \mathbf{D} (molecular weight $=166.10$). Using the ${ }^{1} \mathrm{H}$ NMR data listed below, determine the structure of the product and the starting alcohol. Draw the structures in the boxes provided.

Figure by MIT OCW.
5. (10 points) At room temperature, compound \mathbf{E} is converted to compound \mathbf{F} in high yield. Using the data provided, determine the structure of \mathbf{F} (and draw the structure in the box provided), and write an arrow-pushing mechanism for its formation from \mathbf{E}.

Figure by MIT OCW.
6. (15 points) Propose a synthesis of \mathbf{G} from \mathbf{H}, maleic anhydride, and benzyl bromide $(\mathrm{BnBr}=$ $\mathrm{PhCH}_{2} \mathrm{Br}$). (All of the substituents on the five-membered ring in \mathbf{G} are cis to one another, and your synthesis must establish this relative configuration.) Your synthesis must use \mathbf{H}, maleic anhydride, and BnBr . You may use any other reagents in addition to these. Write your synthesis neatly in the forward direction, and for each transformation, write the reagents necessary over the arrow.

Figure by MIT OCW.
(7) (2 points for each box; 10 points total) Please provide the indicated information. If you use a base or an acid, please specify whether a "catalytic amount", " 1 equivalent", etc. is required.

Figure by MIT OCW.
(8) (12 points) Please provide an efficient synthesis of the indicated target compound. All of the carbon of the target compound must come from methyl acetate.

Figure by MIT OCW.
(9) (10 points) The Strecker reaction, followed by a hydrolysis reaction, is an excellent method for synthesizing amino acids, which are the building blocks of proteins. Provide the best mechanism for this process. Please show all arrow pushing. Note: You do NOT have to draw the mechanism for the hydrolysis reaction.

Figure by MIT OCW.
(10) (12 points) Provide the structure of A and the best mechanism for both of the illustrated transformations. Please show all arrow pushing.

Figure by MIT OCW.
(11) (12 points) Provide the best mechanism for the illustrated process. Please show all arrow processing.

Initiation (4 points):

AlBN:

2 Points

Total 4 Points
Propagation (8 points; please draw this in standard mechanism from, not as a sum/series of equations):

Figure by MIT OCW.
(12) (12 points) Provide the best mechanism for the illustrated process. Please show all arrow pushing. Your mechanism should rationalize why the reaction proceeds with complete retention of stereochemistry.

+8 pts if double inversion mechanism involving NO_{2} as nucleophile

Figure by MIT OCW.
(13) (10 points) Please provide a detailed mechanism for the illustrated transformation. Show all arrow pushing. ($\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$)
Hint \#1: Number your carbons! Hint \#2: PhSH is catalystic!

Initiation:

Propagation:

Figure by MIT OCW.
(14) (10 points) Compound \mathbf{A} is converted to \mathbf{B}, \mathbf{C}, and \mathbf{D} upon heating. The reaction is accelerated by irradiation. Provide the structures of \mathbf{B}, \mathbf{C}, and \mathbf{D}, and provide the mechanisms by which they are formed (please show all arrow pushing).

Figure by MIT OCW.
(15) (16 points total) In an amazing process, Nature transforms squalene oxide into steroids (as a single stereoisomer!). For each of the process illustrated below, provide the best mechanism. Please show all arrow pushing.

Figure by MIT OCW.
+2 for each step: Protonation opening of epoxide each cation π - Cyclization * if no errors
-2 if show wrong connectivity after cation $\pi-$ Cyclic.
(b) (6 points) Intermediate 1 into lanosterol:

* or show stepwise $\overline{\mathrm{C}} \oplus$ charges !
-1 if show deprotonation in same step at alkyl shift.
-1 if show formation of double bond $\overline{\mathrm{s}}$ deprotonation, but show arrow
-2 for every $\underline{\underline{1,3}}$ shift
-1 for every $\underline{\underline{2}}$ missing mech. arrows

Figure by MIT OCW.

