Massachusetts Institute of Technology
 Organic Chemistry 5.13

Friday, September 30, 2005

Prof. Timothy F. Jamison

Hour Exam \#1 SOLUTIONS

Abstract

Name (please both print and sign your name)

Official Recitation Instructor

Directions: Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Please read through the entire exam before beginning, in order to make sure that you have all the pages and in order to gauge the relative difficulty of each question. Budget your time accordingly.

Show all of your work if you wish to receive partial credit.

You should have 11 pages total: 6 exam pages including this page, $\mathbf{3}$ pages of reference information, and $\mathbf{2}$ blank pages for scratchwork.

Question:

1. \qquad / 40 points
2.

 l 30 points
3. \qquad I

Total:__ 100 points

30 points

Grader:
\qquad
\qquad
\qquad
\qquad

1. (40 points total - 5 points each) The molecular formulas and ${ }^{1} \mathrm{H}$ NMR spectra of 8 common organic solvents are provided below and on the following 2 pages. For each, neatly draw the entire structure (i.e., not the acronym) in the box provided. In some cases, relative integration values (circled numbers) and/or other information have been provided.

Note: Do not represent functional groups with partial molecular formulas or other abbreviations. For example, do not use "Ph" or " $\mathrm{C}_{6} \mathrm{H}_{5}$ " for a phenyl group. Draw the entire group (including hydrogen atoms).

Figure by MIT OCW.

Figure by MIT OCW.
2. (30 points total) Answer the questions below about the structure that has the following data:

EA	$\mathrm{C}, 81.61 ; \mathrm{H}, 11.06 ; \mathrm{N}, 7.32$
MS	$191,176$.
${ }^{13} \mathrm{C}$ NMR	$162.7,136.5,118.9,35.1,31.9$
${ }^{1} \mathrm{H}$ NMR	$7.59(\mathrm{t}, \mathrm{J}=7.8,1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.8,2 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H})$

a. (10 points) Determine the molecular formula. Circle your final answer.

$$
\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}
$$

Figure by MIT OCW.
b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

$$
13-21 / 2+1 / 2+1=4
$$

c. (2 points) How many "types of carbon" (chemically non-equivalent) does this compound have? Circle your final answer.

d. (3 points) How many "types of hydrogen" (chemically non-equivalent) does this compound have? Circle your final answer.

e. (10 points) In the space below, draw the structure of the molecule that is consistent with all of the data provided. Circle your final answer.

Figure by MIT OCW.
3. (30 points total) Answer the questions below about the structure that has the following data:

EA	$\mathrm{C}, 75.69 ; \mathrm{H}, 8.80$
M^{+}	206
IR	3430 (broad), 1705 (strong)
${ }^{13} \mathrm{C}$ NMR	$181.4,140.9,137.0,129.5,127.4,45.9,44.1,30.3,22.5,18.2$
${ }^{1} \mathrm{H}$ NMR	$\left.\begin{array}{l}11.9(\text { broad } \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.7,2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=7.7,2 \mathrm{H}), 3.70 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \mathrm{q}, \mathrm{H}\right), 1.49(\mathrm{~d}, \mathrm{~J}=7.0,1 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.8,6 \mathrm{H})$

a. (7 points) Determine the molecular formula. Circle your final answer.

$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}
$$

b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

$$
13-18 / 2+1=5
$$

c. (8 points) Which protons are coupled to which? Complete the tables below using the NMR data above. Write H1, H2, etc. or "none", as appropriate, in the box provided, and list all protons to which a given proton is coupled.

Proton(s)	∂ (ppm)	Coupled to
H 1	11.9	none
H 2	7.21	H 3
H 3	7.09	H 2
H 4	3.70	H 7

Proton(s)	∂ (ppm)	Coupled to
H 5	2.44	H 6
H 6	1.84	$\mathrm{H} 5, \mathrm{H} 8$
H 7	1.49	H 4
H 8	0.89	H 6

d. (10 points) Draw all of the possible enantiomers and diastereomers of the unknown compound that are consistent with all the data given. Circle your final answers.

Figure by MIT OCW.
e. (Extra credit - 5 points total) What is the common name of this over-the-counter pharmaceutical (3 points), and for which symptoms is it indicated (2 points)?

