EXAM \#4 MORE PROBLEMS

DO THESE PROBLEMS BEFORE THE OTHER SET OF EXTRA PROBLEMS!

(they are more relevant to the exam material)

What to expect on Exam \#4:

1. $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of ketones, diketones, esters, etc.
2. ~3 Transformations - supply missing reagents
3. ~ 10 Transformations - supply missing product
4. ~ 2 Mechanisms
5. ~ 2 Synthesis

What NOT to expect on Exam \#4:

1. Determine mechanism by crossover and stereochemical experiments (end of Friday's lecture)
2. Neighboring Group Participation - Do not work through problems \#8, 24 \& 25 on the Extra Problem Set.
3. Please provide a detailed mechanism for the following transformation. Show all arrow pushing.

Figure by MIT OCW.
2. (10 points) Please provide a detailed mechanism for the following transformation. Show all arrow pushing.

3. (10 points) Please provide a detailed mechanism for the following transformation. Show all arrow pushing. Hint: This mechanism is from problem set 6.

Figure by MIT OCW.
4. (10 points) Diastereomers \mathbf{A} and \mathbf{B} provide different products upon diazotization. Please explain why only one product is formed selectively in each reaction. Your explanation should include a 3-dimensional mechanism for the formation of each product from the corresponding diazonium salt.

In the concerted Tiffeneau-Demjanov rearrangement, the migrating bond must be antiperiplanar to the leaving group.

(Bolded bonds are antiperiplanar)

Figure by MIT OCW.
5. Please provide a detailed mechanism for the following transformation. Show all arrow pushing.

Figure by MIT OCW.
6. Please provide a detailed mechanism for the following transformation. Show all arrow pushing.

Figure by MIT OCW.
7. Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from methyl acetate.

Figure by MIT OCW.
8. Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from isopropanol.
Target

Target

OR:

Target

Figure by MIT OCW.
9. (12 points) Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from methyl acetate. You will receive partial credit for a complete retrosynthesis

Target

Figure by MIT OCW.
10. (12 points) Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from dimethyl malonate and alcohols containing three or fewer carbons. You will receive partial credit for a complete retrosynthesis.

Figure by MIT OCW.

