Massachusetts Institute of Technology
 Organic Chemistry 5.13

Friday, September 29, 2006
Prof. Timothy F. Jamison
Hour Exam \#1
Name (please both print and sign your name)

Official Recitation Instructor

Directions: Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Please read through the entire exam before beginning, in order to make sure that you have all the pages and in order to gauge the relative difficulty of each question. Budget your time accordingly.

Show all of your work if you wish to receive partial credit.

You should have 14 pages total: 8 exam pages including this page, 4 pages of reference information, and $\mathbf{2}$ blank pages for scratchwork.

Question:

1. \qquad I 10 points
2.

 I 25 points
3. \qquad I

25 points

4. \qquad I 25 points
5. \qquad I 15 points

Grader:
\qquad
\qquad
\qquad
\qquad
\qquad

Total: \qquad I 100 points \qquad

1. (10 points total, 2 points each) For each set of compounds below, circle the one in which the indicated hydrogen is the furthest upfield in a ${ }^{1} \mathrm{H}$ NMR spectrum.
A.

Both Awarded Full Credit
B.

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

C.

D. CH_{4}

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}_{2}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$
E.

Figure by MIT OCW.
2. (25 points total) Answer the questions below about the structure that has the following data:

EA	C, 66.62; H, 11.18; N, 22.20
MW (g/mol)	126.20
${ }^{13} \mathrm{C}$ NMR (ppm)	140.3, 49.0, 24.7
$\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$	2116 (strong - more intense than the $\mathrm{C}-\mathrm{H}$ stretches between 2800 and 3100); no other peaks between 1500 and 4000.
ctrum:	

Figure by MIT OCW.
a. (3 points) To what structural fragment does the signature splitting pattern in the ${ }^{1} \mathrm{H}$ NMR correspond? Circle your final answer.
b. (2 points) Which peak or peaks in the ${ }^{13} \mathrm{C}$ NMR correspond(s) to the fragment you identified in a, above. List the chemical shift(s) of the peak(s), and circle your final answer(s).
c. (5 points) Determine the molecular formula of this compound. Circle your final answer.
d. (5 points) Calculate the Index of Hydrogen Deficiency (IHD) of this unknown compound. Circle your final answer.
e. (10 points) Draw the structure of the unknown compound. Circle your final answer.
3. (25 points total) Answer the questions below about the structure that has MW=107 and the following NMR spectra:

Figure by MIT OCW.
a. (10 points) Determine the molecular formula of this compound. Circle your final answer.
b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD) of this compound. Circle your final answer.
c. (10 points) Draw the structure of the unknown compound. Circle your final answer.
4. (25 points total) An unknown compound (X) contains only carbon and hydrogen, has MW= 112, and exhibits the spectral data below. In addition to the IR signal listed below, there are only peaks corresponding to $\mathrm{C}-\mathrm{H}$ stretches (between 3300 and 2900) and several peaks in the "fingerprint region". Please note that there are no overlapping peaks in either the ${ }^{1} \mathrm{H}$ NMR or the ${ }^{13} \mathrm{C}$ NMR spectra. In other words, "What you see is all there is!"

IR $\left(\mathrm{cm}^{-1}\right)$	2145
${ }^{13} \mathrm{C}$ NMR (ppm)	$77.8,70.1,30.2$
${ }^{1} \mathrm{H}$ NMR (ppm)	$2.45(\mathrm{~s})$

When compound \mathbf{X} was treated with excess n-BuLi (n-butyllithium) in tetrahydrofuran and then excess $\mathrm{CH}_{3} \mathrm{I}$ (iodomethane), a new compound (Y) with MW $=168$ and 4 signals in its ${ }^{13} \mathrm{C}$ NMR spectrum was formed.

What are the structures of \mathbf{X} (15 points) and \mathbf{Y} (10 points)? (Show your work in the space below for partial credit consideration.) Write your final answers in the boxes provided below.

5. (15 points) In one of our problem sets, cubane $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)$ was one of the possible answers to a structure elucidation problem. Based on the formula for the Index of Hydrogen Deficiency, the IHD of cubane is 5 . However, as you know, a cube has six sides. In other words, it looks like cubane has 6 rings and thus that its IHD should also be 6 .

cubane
$\mathrm{C}_{8} \mathrm{H}_{8}$ IHD $=5$ Please provide an explanation (not the formula used to calculate the IHD) for this apparent discrepancy in the space below.

