Prof. B. Imperiali

Practice Exam #3

Exam will be held on Monday April 14th at noon.

Notes and calculators will not be allowed in the exam but you will be provided with a periodic table and you may bring use molecular models to use.

The exam will cover material from 3/12-4/11.

The practice exam key will be posted as a separate file so that you can print up the exam and take it as a "real practice" before you check out the answers.

Page 2 Short questions (1-9 3 points each and 10-12 4 points)

1. Estimate the $\ensuremath{\mathsf{pK}_{\mathsf{a}}}$ of the proton indicated.

A. 50 B. 35 C. 25 D. 5
2. Estimate the
$$pK_a$$
 of the proton indicated.
 $OH \qquad A. 30$ B. 10 C. 5 D. 1

3. Identify the major product of the reaction shown.

4. Identify the major product of the reaction shown.

Page 3 Short questions

Name _____

5. Which of the following terms is the best description of the alkene shown below.

A. Br ₂ and light	B. meta-chloroperoxybenzoic acid		
C. OsO_4 follwed by H_2O_2	D. O_3 followed by $(CH_3)_2S$		

9. Ozonolysis of an unknown compound gave $CH_2=0$, CH_3CHO and CH_3COCHO . What are possible structures for the unknown compound?

Α.	CH ₃ C≡C ⁻ Na⁺	+ CH ₃ CO ₂ H	\rightarrow	CH ₃ CO ₂ [−] Na ⁺	+ сн₃с≡сн
В.	CH ₃ C≡C ⁻ Na⁺	+ CH ₃ OH	\rightarrow	CH₃O ⁻ Na⁺	+ сн₃с≡сн
C.	СН₃С≡СН	+ NaNH ₂	\rightarrow	NH ₃ +	CH ₃ C≡C ⁻ Na⁺
D.	сн₃с≡сн	+ NaOH	\rightarrow	H ₂ O +	CH₃C≡c⁻№a⁺

11. Compound J undergoes a rearrangement to yield compounds K and L. Based on the potential energy diagram below which of the following statements is true?

Reaction coordinate

A. K is formed faster and is more stable than L.

B. K is formed faster and is less stable than L

C. L is formed faster and is less stable than K

D. L is formed faster and is more stable than K

Name_

12. Label the following pairs of molecules as E (enantiomers), D (diastereomers), or S (same molecule).

Page 6 Long questions (Points as shown) Name _____

13. (16 points) For the following compounds, indicate whether they will react under $S_N 1$ conditions (EtOH, Δ), $S_N 2$ conditions (KI/acetone), both, or **neither**. Indicate the products and by which mechanism they are produced.

Page 7 Long questions (Points as shown) Name_

14. (20 points) Design syntheses of compounds I and II (10 points each). The pool of carbon-containing starting materials that you can use are shown in the square brackets. You may use any other common reagents.

Note: a clear retrosynthetic analysis will be useful for figuring these problems out. Partial credit will be given for a retrosynthetic analysis even if the synthesis is incomplete. 15. (24 points) Provide a detailed stepwise mechanism to account for the following transformations. 8 points each.

