MIT OpenCourseWare
http://ocw.mit.edu

5.04 Principles of Inorganic Chemistry II
 Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.04, Principles of Inorganic Chemistry II
 Prof. Daniel G. Nocera

Lecture 14: Angular Overlap Method (AOM) for ML for ML_{n} Ligand Fields

The Wolfsberg-Hemholtz approximation (Lecture 10) provided the LCAO-MO energy between metal and ligand to be,

$$
\varepsilon_{\sigma}=\frac{\mathrm{E}_{\mathrm{M}}{ }^{2} \mathrm{~S}_{\mathrm{ML}}^{2}}{\Delta \mathrm{E}_{\mathrm{ML}}} \quad \varepsilon_{\sigma^{*}}=\frac{\mathrm{E}_{\mathrm{L}}^{2} \mathrm{~S}_{\mathrm{ML}}^{2}}{\Delta \mathrm{E}_{\mathrm{ML}}}
$$

Note that $\mathrm{E}_{\mathrm{M}}, \mathrm{E}_{\mathrm{L}}$ and $\Delta \mathrm{E}_{\mathrm{ML}}$ in the above expressions are constants. Hence, the MO within the Wolfsberg-Hemholtz framework scales directly with the overlap integral, $S_{M L}$

$$
\varepsilon_{\sigma}=\frac{\mathrm{E}_{\mathrm{M}}{ }^{2} \mathrm{~S}_{\mathrm{ML}}{ }^{2}}{\Delta \mathrm{E}_{\mathrm{ML}}}=\beta^{\prime} \mathrm{S}_{\mathrm{ML}}{ }^{2} \quad \varepsilon_{\sigma^{*}}=\frac{\mathrm{E}_{\mathrm{L}}{ }^{2} \mathrm{~S}_{\mathrm{ML}}{ }^{2}}{\Delta \mathrm{E}_{\mathrm{ML}}}=\beta \mathrm{S}_{\mathrm{ML}}{ }^{2}
$$

where β and β 'are constants. Thus by determining the overlap integral, $S_{M L}$, the energies of the MOs may be ascertained relative to the metal and ligand atomic orbitals.

The Angular Overlap Method (AOM), provides a measure of $\mathrm{S}_{\text {ML }}$ and hence MO energy levels. In AOM, the overlap integral is also factored into a radial and angular product,

$$
S_{M L}=S(r) F(\theta, \phi)
$$

Analyzing $S(r)$ as a function of the $M-L$ internuclear distance,

Under the condition of a fixed M-L distance, $S(r)$ is invariant, and therefore the overlap integral, $S_{M L}$, will depend only on the angular dependence, i.e., on $F(\theta, \phi)$.

Because the σ orbital is symmetric, the angular dependence, $F(\theta, \phi)$, of the overlap integral mirrors the angular dependence of the central orbital.
p-orbital
...is defined angularly by a $\cos \theta$ function. Hence, the angular dependence of a σ orbital as it angularly rotates about a p-orbital reflects the $\cos \theta$ angular dependence of the p-orbital.

Similarly, the other orbitals take on the angular dependence of the central metal orbital. Hence, for a

ML Diatomic Complexes

To begin, let's determine the energy of the d-orbitals for a M-L diatomic defined by the following coordinate system,

There are three types of overlap interactions based on σ, π and δ ligand orbital symmetries. For a σ orbital, the interaction is defined as,

$$
\mathrm{E}\left(\mathrm{~d}_{\mathrm{z}^{2}}\right)=\mathrm{S}_{\mathrm{ML}}{ }^{2}(\sigma)=\beta \cdot \mathrm{F}_{\sigma}^{2}(\theta, \phi)=\beta \cdot 1=\mathrm{e} \sigma
$$

The energy for maximum overlap, at $\theta=0$ (see above) is set equal to 1 . This energy is defined as ef. The metal orbital bears the antibonding interaction, hence $d_{z^{2}}$ is destablized by e σ (the corresponding L orbital is stabilized by $\left.\left(\beta^{\prime}\right)^{2} \cdot 1=e \sigma^{\prime}\right)$.

For orbitals of π and δ symmetry, the same holds...maximum overlap is set equal to 1 , and the energies are e π and $e \delta$, respectively.

$E\left(d_{y z}\right)=E\left(d_{x z}\right)=S_{M L}{ }^{2}(\pi)=\mathrm{e} \pi$

$$
\mathrm{E}\left(\mathrm{~d}_{\mathrm{xy}}\right)=\mathrm{E}\left(\mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}\right)=\mathrm{S}_{\mathrm{ML}}{ }^{2}(\delta)=\mathrm{e} \delta
$$

As with the σ interaction, the ($\mathrm{M}-\mathrm{L} \pi)^{*}$ interaction for the d-orbitals is de-stabilizing and the metal-based orbital is destablized by e π, whereas the $L \pi$ ligands are stabilized by e π. The same case occurs for a ligand possessing a δ orbital, with the only difference being an energy of stabilization of e δ for the L δ orbital and the energy of de-stabilization of e δ for the δ metal-based orbitals.
$\mathrm{S}_{\mathrm{ML}}(\delta)$ is small compared to $\mathrm{S}_{\mathrm{ML}}(\pi)$ or $\mathrm{S}_{\mathrm{ML}}(\sigma)$. Moreover, there are few ligands with δ orbital symmetry (if they exist, the δ symmetry arises from the $\mathrm{p} \pi$-systems of organic ligands). For these reasons, the $\mathrm{S}_{\mathrm{ML}}(\delta)$ overlap integral and associated energy is not included in most AOM treatments.

Returning to the problem at hand, the overall energy level diagrams for a M-L diatomic molecule for the three ligand classes are:

ML ${ }_{6}$ Octahedral Complexes

Of course, there is more than 1 ligand in a typical coordination compound. The power of AOM is that the e σ and $\mathrm{e} \pi$ (and e δ), energies are additive. Thus, the MO energy levels of coordination compounds are determined by simply summing eo and $e \pi$ for each $M(d)-L$ interaction.

Consider a ligand positioned arbritrarily about the metal,

We can imagine placing the ligand on the metal z axis (with x and y axes of M and L also aligned) and then rotate it on the surface of a sphere (thus maintaining $\mathrm{M}-\mathrm{L}$ distance) to its final coordinate position. Within the reference frame of the ligand,

Note, the coordinate transformation lines up the ligand of interest on the z axis so that the normalized energies, e σ and $\mathrm{e} \pi$ (and e δ) may be normalized to 1 . The transformation matrix for the coordinate transformation is:

	$\mathbf{z}_{\mathbf{2}}{ }^{\mathbf{2}}$	$\mathbf{y}_{\mathbf{2}} \mathbf{z}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{2}} \mathbf{z}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{2}} \mathbf{y}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{2}}{ }^{\mathbf{2}} \mathbf{y}_{\mathbf{2}}{ }^{\mathbf{2}}$
$\mathbf{z}^{\mathbf{2}}$	$\frac{1}{4}(1+3 \cos 2 \theta)$	0	$-\frac{\sqrt{3}}{2} \sin 2 \theta$	0	$\frac{\sqrt{3}}{4}(1-\cos 2 \theta)$
$\mathbf{y z}$	$\frac{\sqrt{3}}{2} \sin \phi \sin 2 \theta$	$\cos \phi \cos \theta$	$\sin \phi \cos 2 \theta$	$-\cos \phi \sin \theta$	$-\frac{1}{2} \sin \phi \sin 2 \theta$
$\mathbf{x z}$	$\frac{\sqrt{3}}{2} \cos \phi \sin 2 \theta$	$-\sin \phi \cos \theta$	$\cos \phi \cos 2 \theta$	$\sin \phi \sin \theta$	$-\frac{1}{2} \cos \phi \sin 2 \theta$
$\mathbf{x y}$	$\frac{\sqrt{3}}{4} \sin 2 \phi(1-\cos 2 \theta)$	$\cos 2 \phi \sin \theta$	$\frac{1}{2} \sin 2 \phi \sin 2 \theta$	$\cos 2 \phi \cos \theta$	$\frac{1}{4} \sin 2 \phi(3+\cos 2 \theta)$
$\mathbf{x}^{\mathbf{2}}-\mathbf{y}^{\mathbf{2}}$	$\frac{\sqrt{3}}{4} \cos 2 \phi(1-\cos 2 \theta)$	$-\sin 2 \phi \sin \theta$	$\frac{1}{2} \cos 2 \phi \sin 2 \theta$	$-\sin 2 \phi \cos \theta$	$\frac{1}{4} \cos 2 \phi(3+\cos 2 \theta)$

For ligands in an octahedral complex, the θ and ϕ for the six ligands values are,

Ligand	1	2	3	4	5	6
θ	0	90	90	90	90	180°
ϕ	0	0	90	180	270	0

Consider the overlap of Ligand 2 in the transformed coordinate space; the contribution of the overlap of Ligand 2 with each metal orbital must be considered. This orbital interaction is given by the transformation matrix above. By substituting the $\theta=90$ and $\phi=0$ for Ligand 2 into the above transformation matrix, one finds,
for $\mathrm{d}_{\mathrm{z}^{2}}$ for L_{2}

$$
\begin{aligned}
\mathrm{d}_{z^{2}} & =\frac{1}{4}(1+3 \cos 2 \theta) \mathrm{d}_{\mathrm{z}_{2}^{2}}+0 \mathrm{~d}_{\mathrm{y}_{2} z_{2}}-\frac{\sqrt{3}}{2} \sin 2 \theta \mathrm{~d}_{{\mathrm{x} 22_{2}}}+0 \mathrm{~d}_{\mathrm{x}_{2} y_{2}}+\frac{\sqrt{3}}{4}(1-\cos 2 \theta) \mathrm{d}_{\mathrm{x}_{2}^{2}-y_{2}^{2}} \\
& =-\frac{1}{2} d_{\mathrm{z}_{2}^{2}}+0 d_{y_{2} z_{2}}+0 d_{\mathrm{x}_{2} z_{2}}+0 \mathrm{~d}_{\mathrm{x}_{2} y_{2}}+\frac{\sqrt{3}}{2} d_{x_{2}^{2}-y_{2}^{2}}
\end{aligned}
$$

Thus the $\mathrm{d}_{\mathrm{z}^{2}}$ orbital in the transformed coordinate, $\mathrm{d}_{\mathrm{z}_{2}{ }^{2}}$, has a contribution from $\mathrm{d}_{\mathrm{z}^{2}}$ and $d_{x^{2}-y^{2}}$. Recall that energy of the orbital is defined by the square of the overlap integral. Thus the above coefficients are squared to give the energy of the $\mathrm{d}_{\mathrm{z}^{2}}$ orbital as a result of its interaction with Ligand 2 to be,

$$
\mathrm{E}\left(\mathrm{~d}_{\mathrm{z}^{2}}\right)^{\mathrm{L2}}=\mathrm{S}_{\mathrm{ML}}{ }^{2}(\sigma)=\beta \cdot \mathrm{F}_{\sigma}{ }^{2}(\theta, \phi)=\frac{1}{4} \mathrm{~d}_{\mathrm{z}_{2}{ }^{2}}+\frac{3}{4} \mathrm{~d}_{\mathrm{x}_{2}{ }^{2}-\mathrm{y}_{2}{ }^{2}}=\frac{1}{4} \mathrm{e} \sigma+\frac{3}{4} \mathrm{e} \delta
$$

Visually, this result is logical. In the coordinate transformation, a σ ligand residing on the z-axis (of energy ef) is overlapping with $d_{z^{2}}$. This is the energy for L1. The normalized energy for L 2 is its overlap with the coordinate transformed $\mathrm{d}_{\mathrm{z}_{2}}$:

bring L2 up to $\mathrm{d}_{\mathrm{z}}{ }^{2}$ in the z^{2} transformed coordinate system

Note, the $d_{z^{2}}$ orbital is actually $2 z^{2}-x^{2}-y^{2}$, which is a linear combination of $z^{2}-x^{2}$ and $z^{2}-y^{2}$. Thus in the coordinate transformed system, $L 2$, as compared to $L 1$, is looking at the x^{2} contribution of the wavefunction to σ bonding. Since it is $1 / 2$ the electron density of that on the z-axis, it is $1 / 4$ the energy (i.e., the square of the coefficient) on the σ-axis, hence $1 / 4$ e σ. The δ component of the transformation comes from the $2 z^{2}-\left(x^{2}+y^{2}\right)$ orbital functional form. Thus if L2 has an orbital of δ symmetry, then it will have an energy of $3 / 4 \mathrm{e} \delta$.

The transformation properties of the other d-orbitals, as they pertain to L2 orbital overlap, may be ascertained by completing the transformation matrix for $\theta=90$ and $\phi=0$,

$$
\left[\begin{array}{c}
d_{z^{2}} \\
\mathrm{~d}_{\mathrm{yz}} \\
\mathrm{~d}_{\mathrm{xz}} \\
\mathrm{~d}_{\mathrm{xy}} \\
\mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}
\end{array}\right]=\left[\begin{array}{ccccc}
-\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{d}_{\mathrm{z}_{2}{ }^{2}} \\
\mathrm{~d}_{\mathrm{y}_{2} z_{2}} \\
\mathrm{~d}_{\mathrm{x}_{2} z_{2}} \\
\mathrm{~d}_{\mathrm{x}_{2} \mathrm{y}_{2}} \\
\mathrm{~d}_{\mathrm{x}_{2}{ }^{2}-\mathrm{y}_{2}{ }^{2}}
\end{array}\right]
$$

The energy contribution from L2 to the d-orbital levels as defined by AOM is,

$$
\mathrm{E}\left(\mathrm{~d}_{\mathrm{yz}}\right)=\mathrm{e} \delta ; \quad \mathrm{E}\left(\mathrm{~d}_{\mathrm{xz}}\right)=\mathrm{e} \pi ; \quad \mathrm{E}\left(\mathrm{~d}_{\mathrm{xy}}\right)=\mathrm{e} \pi ; \quad \mathrm{E}\left(\mathrm{~d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}\right)=\frac{3}{4} \mathrm{e} \sigma+\frac{1}{4} \mathrm{e} \delta
$$

Until this point, only the L2 ligand has been treated. The overlap of the d-orbitals with the other five ligands also needs to be determined. The elements of the transformation matrices for these ligands are,

$$
\begin{aligned}
\mathrm{L}_{1}:\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{L}_{3}:\left[\begin{array}{rrrrr}
-\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & 0 & 0 & -\frac{1}{2}
\end{array}\right] \quad \mathrm{L}_{4}:\left[\begin{array}{rrrrr}
-\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right] \\
\mathrm{L}_{5}:\left[\begin{array}{rrrrr}
-\frac{1}{2} & 0 & 0 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & 0 & 0 & -\frac{1}{2}
\end{array}\right] \quad \mathrm{L}_{6}:\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Squaring the coefficients for each of the ligands and then summing the total energy of each d-orbital,

	L1	L2	L3	L4	L5	L6	$\mathrm{E}_{\text {total }}$
$\mathrm{E}\left(\mathrm{d}_{\mathrm{z}^{2}}\right)$	eб	$\frac{1}{4} \mathrm{e} \sigma+\frac{3}{4} \mathrm{e} \delta$	eб	$=3 \mathrm{e} \sigma+3 \mathrm{e} \delta$			
$E\left(d_{\text {yz }}\right)$	$\mathrm{e} \pi$	e δ	e π	e δ	$\mathrm{e} \pi$	$\mathrm{e} \pi$	$=4 \mathrm{e} \pi+2 \mathrm{e} \delta$
$E\left(d_{x z}\right)$	e π	e π	e δ	e π	e δ	e π	$=4 \mathrm{e} \pi+2 \mathrm{e} \delta$
$E\left(d_{x y}\right)$	e δ	e π	e π	$\mathrm{e} \pi$	$\mathrm{e} \pi$	e δ	$=4 \mathrm{e} \pi+2 \mathrm{e} \delta$
$E\left(d_{x^{2}-y^{2}}\right)$	e δ	$\frac{3}{4} \mathrm{e} \sigma+\frac{1}{4} \mathrm{e} \delta$	e δ	$=3 \mathrm{e} \sigma+3 \mathrm{e} \delta$			

As mentioned above, $e_{\delta} \ll e_{\sigma}$ or $e_{\pi} \ldots$ thus e_{δ} may be ignored. The O_{h} energy level diagram is:

Note the d-orbital splitting is the same result obtained from the crystal field theory (CFT) model taught in freshman chemistry. In fact the energy parameterization scales directly between CFT and AOM

$$
10 \mathrm{Dq}=\Delta_{0}=3 \mathrm{e} \sigma-4 \mathrm{e} \pi
$$

