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5.04, Principles of Inorganic Chemistry II 
Prof. Daniel G. Nocera 

Lecture 14: Angular Overlap Method (AOM) for ML for MLn Ligand Fields 

The Wolfsberg-Hemholtz approximation (Lecture 10) provided the LCAO-MO energy 
between metal and ligand to be, 
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Note that EM, EL and ΔEML in the above expressions are constants. Hence, the MO 
within the Wolfsberg-Hemholtz framework scales directly with the overlap integral, 
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where β and β´are constants. Thus by determining the overlap integral, SML, the 
energies of the MOs may be ascertained relative to the metal and ligand atomic 
orbitals. 

The Angular Overlap Method (AOM), provides a measure of SML and hence MO 
energy levels. In AOM, the overlap integral is also factored into a radial and angular 
product, 

SML = S(r) F(θ,φ) 

Analyzing S(r) as a function of the M–L internuclear distance, 

Under the condition of a fixed M-L distance, S(r) is invariant, and therefore the 
overlap integral, SML, will depend only on the angular dependence, i.e., on F(θ,φ). 
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Because the σ orbital is symmetric, the angular dependence, F(θ,φ), of the overlap 
integral mirrors the angular dependence of the central orbital. 

p-orbital 

…is defined angularly by a cos θ function. Hence, the angular dependence of a σ 
orbital as it angularly rotates about a p-orbital reflects the cos θ angular 
dependence of the p-orbital. 

Similarly, the other orbitals take on the angular dependence of the central metal 
orbital. Hence, for a 
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ML Diatomic Complexes 

To begin, let’s determine the energy of the d-orbitals for a M-L diatomic defined by 
the following coordinate system, 

There are three types of overlap interactions based on σ, π and δ ligand orbital 
symmetries. For a σ orbital, the interaction is defined as, 

E d 2z
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⎝ 

⎞⎟
⎠


=
 S
ML 
2 σ 2 )( )  β F (θ,φ β 1 eσσ =
 =
 =
• • 

The energy for maximum overlap, at θ = 0 (see above) is set equal to 1. This 
energy is defined as eσ. The metal orbital bears the antibonding interaction, hence 
dz2 is destablized by eσ (the corresponding L orbital is stabilized by (β’)2 • 1 = eσ’). 

For orbitals of π and δ symmetry, the same holds…maximum overlap is set equal to 
1, and the energies are eπ and eδ, respectively. 

2E (d ) = S (π ) = eπ E (d )xz MLE (dyz ) =
 xy =
E
⎛⎜
⎝

d x2 2−y 

⎞⎟
⎠


=
S
ML 
2 ( ) 
δ = eδ


5.04, Principles of Inorganic Chemistry II Lecture 14 
Prof. Daniel G. Nocera Page 3 of 8 



As with the σ interaction, the (M-Lπ)* interaction for the d-orbitals is de-stabilizing 
and the metal-based orbital is destablized by eπ, whereas the Lπ ligands are 
stabilized by eπ. The same case occurs for a ligand possessing a δ orbital, with the 
only difference being an energy of stabilization of eδ for the Lδ orbital and the 
energy of de-stabilization of eδ for the δ metal-based orbitals. 

SML(δ) is small compared to SML(π) or SML(σ). Moreover, there are few ligands with δ 
orbital symmetry (if they exist, the δ symmetry arises from the pπ-systems of organic 
ligands). For these reasons, the SML(δ) overlap integral and associated energy is not 
included in most AOM treatments. 

Returning to the problem at hand, the overall energy level diagrams for a M-L 
diatomic molecule for the three ligand classes are: 

ML6 Octahedral Complexes 

Of course, there is more than 1 ligand in a typical coordination compound. The 
power of AOM is that the eσ and eπ (and eδ), energies are additive. Thus, the MO 
energy levels of coordination compounds are determined by simply summing eσ 
and eπ for each M(d)-L interaction. 
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Consider a ligand positioned arbritrarily about the metal, 

We can imagine placing the ligand on the metal z axis (with x and y axes of M and L 
also aligned) and then rotate it on the surface of a sphere (thus maintaining M-L 
distance) to its final coordinate position. Within the reference frame of the ligand, 

related by a coordinate transformation 
SML in  complex  SML (σ and π) = 1 

F (θ,φ) 

Note, the coordinate transformation lines up the ligand of interest on the z axis so 
that the normalized energies, eσ and eπ (and eδ) may be normalized to 1. The 
transformation matrix for the coordinate transformation is: 
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For ligands in an octahedral complex, the θ and φ for the six ligands values are, 

Ligand 1 2 3 4 5 6 
θ 0 90 90 90 90 180° 
φ 0 0 90 180 270 0 

Consider the overlap of Ligand 2 in the transformed coordinate space; the 
contribution of the overlap of Ligand 2 with each metal orbital must be considered. 
This orbital interaction is given by the transformation matrix above. By substituting 
the θ = 90 and φ = 0 for Ligand 2 into the above transformation matrix, one finds, 

for dz2 for L2 

d 2 = 1 ( 1 + 3cos2θ )d 2 + 0dy z − 
3 

sin2θ dx z + 0dx y + 
3 ( 1 − cos2θ )d 2 2z 4 z2 2 2 2 2 2 2 2 4 x2 −y2 

1 3 
= − d + 0d + 0d + 0d + d 

2 z 2 y2z2 x2z2 x2y2 2 x 2 −y 2 
2 2 2 

Thus the dz2 orbital in the transformed coordinate, dz2
2, has a contribution from dz2 

and dx2–y2. Recall that energy of the orbital is defined by the square of the overlap 
integral. Thus the above coefficients are squared to give the energy of the dz2 

orbital as a result of its interaction with Ligand 2 to be, 

⎛⎜
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Visually, this result is logical. In the coordinate transformation, a σ ligand residing 
on the z-axis (of energy eσ) is overlapping with dz2. This is the energy for L1. The 
normalized energy for L2 is its overlap with the coordinate transformed dz2

2: 

⎞⎟
⎠


L2 

= S σ = β • F θ,φ = d + d = eσ + eδML
2 ( )  σ 

2 ( ) 1
4 z 2 

3
4 x 2 −y 2

1
4 

3
42 2 2

2 

5.04, Principles of Inorganic Chemistry II Lecture 14 
Prof. Daniel G. Nocera Page 6 of 8 



Note, the dz2 orbital is actually 2z2–x2–y2, which is a linear combination of z2–x2 and 
z2–y2. Thus in the coordinate transformed system, L2, as compared to L1, is looking 
at the x2 contribution of the wavefunction to σ bonding. Since it is ½ the electron 
density of that on the z-axis, it is ¼ the energy (i.e., the square of the coefficient) 
on the σ-axis, hence ¼ eσ. The δ component of the transformation comes from the 
2z2–(x2+y2) orbital functional form. Thus if L2 has an orbital of δ symmetry, then it 
will have an energy of ¾ eδ. 

The transformation properties of the other d-orbitals, as they pertain to L2 orbital 
overlap, may be ascertained by completing the transformation matrix for θ = 90 
and φ = 0, 
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The energy contribution from L2 to the d-orbital levels as defined by AOM is, 
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Until this point, only the L2 ligand has been treated. The overlap of the d-orbitals 
with the other five ligands also needs to be determined. The elements of the 
transformation matrices for these ligands are, 
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Squaring the coefficients for each of the ligands and then summing the total 
energy of each d-orbital, 

L1 L2 L3 L4 L5 L6 ETOTAL 
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As mentioned above, eδ << eσ or eπ… thus eδ may be ignored. The Oh energy level 
diagram is: 

Note the d-orbital splitting is the same result obtained from the crystal field theory 
(CFT) model taught in freshman chemistry. In fact the energy parameterization 
scales directly between CFT and AOM 

10 Dq = Δ0 = 3eσ – 4eπ 
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