
9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences 
Emery N. Brown 
 

Lecture 4: Transformations of Random Variables, Joint Distributions of  
Random Variables 

 
I. Objectives 
 

A. Understand the basic rules for computing the distribution of a function of a 
random variable. 

 
B. Understand how some important probability densities are derived using this 

method. 
 

C. Understand the concept of the joint distribution of random variables. 
 
D. Understand the bivariate Gaussian distribution. 

 
 
II. Transformations of Random Variables 
If we assume X  is a continuous random variable with pdf ( )f x  we consider the following 
transformations of X . They are 
 

1.  = +Y aX b   (Linear) 
 
2. | |Y X=       (Absolute Value)    (4.1) 

3. 2Y X=         (Quadratic) 
 
4. ( )Y g x=       (Monotonic) 

 
In each case, we will want to find ( ).yf y  
 
Example 4.1 Linear Transformation.  Take .= +Y aX b  Find ( )yf y  (Rice: pp 64-67, Problem 
62). Find the cdf and the pdf of .Y  
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which is the cdf of .Y  We find the pdf ( )yf y by differentiating ( )yF y  and considering two cases 
 
Case i  0 :>a  



page 2: Lecture 4: Transformations of Random Variables, Joint Distributions of Random Variables 

  
( ) ( ( ))

1

−=

−= fx ( )
a a

×

y x
d y bf y F
dy a
y b

 (4.3) 

 
Case ii  0 :<a  
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for all y  and hence, it is not a probability density. Thus, we multiply by 1
−a

 if 0.<a  Putting these 

two cases together we have 
 

  1( ) ( )
| |

−=y x
y bf y f
a a

 (4.4) 

 
Remark 4.1. Example 4.1 illustrates a special case of the general result we establish in 
Proposition 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4A. Fifteen-second time course of raw electromyogram (EMG) signals (panel 1) 
and the rectified EMG signals recorded from the semitendonosis muscle of a frog 
executing swimming motions. 
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Example 4.2. Probability Density of a Rectified Electromyogram Signal. 
2( , ) | |X N Y Xµ σ =:  Find ( ).yf y  This is the problem that must be considered in analyzing 

electromyographic (EMG) data. An EMG is a recording of the electrical impulses transmitted 
through a group of muscle fibers. The impulses and the electrical potentials are both positive 
and negative (Figure 4A, panel 1). Because the force that is generated by a muscle is only 
positive, the data are analyzed after rectification. That is taking the absolute value of each 
observation (Figure 4B, panel 2). If we assume that the data are Gaussian, then we need to 
compute the probability density of the absolute value of a Gaussian random variable. 
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Hence, 

  

1 1( ) ( ) ( )

1 [ ( ) ( )].

− − −= +

− − −= +

Y
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 (4.6) 

 

If 0µ =  then, the probability density is 2( ) ( ) 0.= >y
yf y yφ

σ σ
 This is not the probability density of 

the sum of two Gaussian random variables. This we will study in Lectures 5 and 6.  
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Figure 4B. Histograms of the raw EMG signals (panel 1) and the rectified EMG signals 
(panel 2) from Figure 4A. 
 
Example 4.2 (continued). Figure 4B shows the histogram of the raw EMG signal (panel 1) and 
the rectified EMG signal (panel 2). How can we evaluate if the Gaussian assumption is 
reasonable? 
 
Example 4.3. If X N: (0,1)  and Y X= 2 Find f yy ( ). 
 
We have  
 

  
1 1
2 2

1 1
2 2

2Pr( ) Pr( )Y y≤ = X y

Pr( y X y )

( )y y( )

= − ≤ ≤
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 (4.7) 

 
On differentiating we obtain 
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 (4.8) 

 

which is a gamma density with 1
2

α =  and 1 .
2

β =  This density is called a chi-squared density 

with 1 degree of freedom written 2
1 .χ  The 2χ  distribution with n  degrees of freedom will be 

important in our data analyses. 
 
 We can state a generalization of what we have done in computing the distribution of 
transformations of random variables. 
 
Proposition 4.1. If X  is a continuous random variable with pdf ( )xf x  and let ( )Y g X=  where g  
is a differentiable, strictly monotonic function on some interval .I  Suppose ( ) 0f x =  if .∉x I  Then 
Y  has the density function 

  = − −df yy x( ) f (g 1 1( )y )⋅ | g ( )y |
dy

 (4.9) 

 
Proof: g  is strictly monotonic means that if 1 2x x<  then 1 2( ) ( )g x g x<  if g  is increasing and 

2 1( ) ( )g x g x<  if g  is decreasing. On the interval I  the mapping from X  to Y  is one-to-one. 

Hence, 1g−  exists, and 
 

≤
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Pr(Y y≤ ) = Pr(g(X ) ≤ y)

= Pr(X g≤ −1(y))

= F gx ( (−1 y))  (4.10) 
' 1 df y x( )y = F g( − −( )y ) ⋅ (g 1( )y )

dy

= − −1 1df gx ( (y)) ⋅ ( (g y))
dy

 

If 1( ( )) 0,− <d g y
dy

 then we multiply by 1( ( ))−− d g y
dy

 to insure that ( ) 0≥yf y  for all .y   Because g  is 

a one-to-one mapping, we can write a more intuitive derivation because we must have, working 
with differentials, 
 

  
( ) ( )

( ) ( )

y xf y dy = f x dx

dx (4.11) 
f y xy = f x

dy

Now 1( )x g y−=  so that 
 

  df y 1 1
y x( ) = f (g− −( )y ) ⋅ (g ( )y ) (4.12) 

dy
 
Again, we note that we take the absolute value of the derivative to make sure that ( ) 0yf y ≥  for 
all .y  
 
 

 
 
Figure 4C. Mapping and inverse mapping between x and y.  
 
II. Joint Distributions of Random Variables 
 We consider now joint distributions of random variables. Being able to analyze the joint 
distribution of n  random variables that represent a collection of data will be essential for our 
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statistical modeling. In general, the behavior of two random variables X  and Y  is given by the 
joint cumulative distribution function 
 
  ( , ) Pr( , )F x y X x Y y= ≤ ≤  (4.13) 
 
whether X  and Y  are continuous or discrete.  
 
 
A. Discrete Random Variables 
If X  and Y  are discrete random variables defined on the same outcome space and they 
assume values respectively 1 2, ,...,x x  and 1 2, ,...,y y  then their joint probability mass function is  
 
  ( , ) Pr( , ).i j i jp x y X x Y y= = =  (4.14) 
 
We have that ( ) 1i ji j

p x y =∑∑  so that the joint pmf is well defined. We illustrate this idea with a 

simple example. 
 
Example 2.0 (continued). One roll of two fair dice yields 
 

  

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6

Y

X  

 
where X  is the value on the face of the first die and Y  is the value on the face of the second 
die. We have 
 

  1( , )
36i ip x y =  (4.15) 

 
for 1,2,3,4,5,6ix =  and 1,2,3,4,5,6iy =  and 0  otherwise. 
 
For example 

  1(3,1) (2,2) (1,3)
36

p p p= = =  (4.15) 

 
and 

6

1
Pr( 1) ( 1, ) ( 1, 1) ( 1, 2) ( 1, 3) ( 1, 4) ( 1, 5)

1( 1, 6) .
6

i
i

X p X Y p X Y p X Y p X Y p X Y p X Y

p X Y

=
= = = = = = + = = + = = + = = + = =

+ = = =

∑
  

 
   (4.17) 
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To find the pmf of X  we sum across the columns, whereas to find the pmf of ,Y  we sum across 
the rows. This defines the marginal probability mass functions of X  and Y  respectively as  
 

  
( ) ( , )

( ) ( , )

x ii

y ii

p x p x y

p y p x y

=

=

∑
∑

 (4.18) 

 
B. Continuous Random Variables   
If X  and Y  are continuous random variables with a joint cdf ( , ),F x y  their joint probability 
density function is the piecewise continuous function of two variables ( , )f x y defined as  
 

  
( , ) 0

( , ) 1.
∞ ∞

−∞ −∞

≥

=∫ ∫
f x y

f x y dxdy
 (4.19) 

 
For any “reasonable” set A  
 
  Pr( , ) ) ( , )∈ = ∫ ∫AX Y A f x y dxdy  (4.20) 

 
If {( , ) | , },A x y X x Y y= ≤ ≤  
 

  ( , ) ( , ) .
−∞ −∞

= ∫ ∫
x y

F x y f u v dudv  (4.21) 

 
From the fundamental theorem of multivariate calculus, it follows that  
 

  
2 ( , )( , ) ∂=
∂ ∂
F x yf x y
x y

 (4.22) 

 
wherever the derivative is defined. 
 
For small xδ  and ,yδ  if f  is continuous, we have 
 

  Pr( , ) ( , ) ( , ) .
x x y y

x y
x X x x y Y y y f u v dvdu f x y dxdy

δ δ
δ δ

+ +
≤ ≤ + ≤ ≤ + = ≈∫ ∫  (4.23) 

 
Roughly speaking for a 1-dimensional continuous random variable computing probabilities 
corresponds to computing the area under a curve, whereas for 2-dimensional continuous 
random variables, computing probabilities corresponds to computing the volume under a 
surface. 

≤ ≤ + ≤
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Figure 4.D. The domain of integration for Example 4.4 is the region {(x y, ) | 0 ≤ y ≤ ≤x 1}.  
 
Example 4.4 (Rice, pp. 75-76). Consider the bivariate density  
 

  12f ( ,x y) = +(x2 xy) 0 ≤ ≤x 1 0 ≤ y ≤1 (4.24)
7

 
Compute 
  Pr( )X Y>  (4.25)
 
This is the set 
  {( , ) | 0 1}≤ ≤ ≤x y y x (4.26)
 
 

  

12P ∫ ∫
1 x

r(X Y> =) (x2 + xy)dydx
7 0 0

x
12 ∫

1 2 3xy2 312 4.
7 2∫

1 x= +( )x y dx = (x + )dx ( 27)
7 20 0

0
1

36 ∫
1 36 4
3 x 9= =x dx =

14 0 14 4 14
0

 
The marginal cumulative distribution function of X  is  
 

F xx ( ) Pr(X x)
  x ∞

f ( ,u y)dydu
−∞ −∞

= ≤
 (4.28) 

= ∫ ∫
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Figure 4.E. The domain of integration for Example 4.5 is the region 0 ≤ ≤x y .  
 
Example 4.5 (Rice, pp. 79-80). Consider the joint probability density  
 

2
  0 , 0⎧⎪λ λe−λ y ≤ ≤x y >f ( ,x y) = ⎨  (4.29) 

⎪⎩ 0
 
Find the marginal pdf of X  and the marginal pdf of .Y  
 
For ( )xf x  we have 

  

∞
fx x( )x = ∫ f y (x, y)dy−∞  (4.30) 

∫
∞ 2 − −λ λy blim= =λ λe dy − e + λe−λx = λe−λx
x b→∞

 
Hence, X  has an exponential pdf. Now ( , ) 0xyf x y =  for 0x ≤  and x y>  
 

  x y y yf y ∫ ∫
∞ y

( ) f (x)d 2 2− −
Y x= =y λ λe λ λdx = e x = λ2ye−λy . (4.31) 0−∞ 0

 
Hence, Y  has a gamma pdf with 2α =  and .β λ=  
 
 
C. Bivariate Gaussian Probability Density 
An important bivariate probability density is given by  
 



page 10: Lecture 4: Transformations of Random Variables, Joint Distributions of Random Variables 

  
1
2

22

2 2 22

( ) 2 ( )( )1 1 ( )x − µ y − µx y ρ x y− −µ µx yf ( ,x y) = ×exp{− [ + − ]} (4.32)
2πσ x yσ (1− ρ ) 2(1− ρ σ) x yσ σ σx y

 
where ( , ), ( , ), ( , ), ( , ),x yx y µ µ∈ −∞ ∞ ∈ −∞ ∞ ∈ −∞ ∞ ∈ −∞ ∞ 0, 0x yσ σ> >  and 1 1.ρ− < <  We have that 

xµ  is the mean of ,X  µy  is the mean of ,Y  xσ  is the standard deviation of ,X  σ y  is the 
standard deviation of y  and ρ  is the correlation coefficient.  We have that ( , )f x y  is constant if 
 

  
22

2 2

( ) 2 ( )( )( ) − − −−
+ − =y x yx

x yx y

y x yx
c

µ ρ µ µµ (4.33) 
σ σ σ σ

 
 
The locus of these points is an ellipse centered at ( , ).x yµ µ  If 0ρ =  the axes are parallel to the x
and y  axes. If 0,≠ρ  then axes are tilted. If 0,>ρ  then the tilt is positive. If 0,<ρ  then the tilt is 
negative.  
 
 

 
Figure 4.F. Bivariate Gaussian probability density. 

The marginal distributions of x  and y  are respectively X N( ,µ 2
x xσ )  and Y N( ,µ 2

y yσ ). To 
show this we write 

∞
  

� �

fx x(x) = ∫ f y ( ,x y)dy  (4.34) 
−∞

 
( )x − µ ( )y − µ

Making the change of variables u = x  and yv =  gives  
σ x σ y

1 1  fx (x) =
2 (πσ 1 ρ2 )

1

x − 2 ∫
∞
exp{− (u2 2+ v 2ρuv)}dv

−∞ 2(1− ρ2 )
− (4.35) _

− x
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Complete the square in v  
 

  
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2

2 ( ) (1 )

+ − = + − +

= − + + + = − + −

u v uv u v uv u

v uv u u u u u

ρ ρ ρ ρ

ρ ρ ρ ρ ρ
 (4.36) 

 
Hence, substituting and using the definition of a Gaussian integral 
 

  

2

2

1 1 ∞ v u−fx (x = 2 1 ( ρ)
2 (πσ 1− ρ2)

1 exp{− u }∫ exp{ dv
2 2 2−∞ (1− ρ2x )

1(2π ρ(1− 2))
1
2 1 2 21=

1
2

1
1 exp{− u u}= ( ) exp{ }  

2 2 2 2πσ 2

)

22 (1 ) xx

x

πσ ρ

−

−
−

= − µ( 2 1
2

1 ( )−2πσ ) exp{ x
x − }

2 σ 2x

(4.37) 

Since ( ) / .x xu x µ σ= −  

 
 
Figure 4G. 1.6 seconds of two time-series of simultaneous recordings from a front (panel 
1) and a back (panel 2) magnetoencephalogram SQUID sensor.  
 
Example 4.6. The Joint PDF of Two MEG Sensors. Figure 4H shows the scatterplot of 
simultaneous recordings from the two MEG SQUID sensors in Figure 4G. Do the data appear to 
be bivariate Gaussian? Histograms with superimposed estimates of the marginal probability 
densities are shown in panels 1 and 3 of Figure 4I The corresponding Q-Q (probability) plots for 
the two marginal probability densities are shown in panels 2 and 4 of Figure 4I. Do the marginal 
pdf’s appear to be Gaussian? Is the correlation coefficient positive or negative for this probability 
density? 
 
 
 
 
 
 

u

v

_
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Figure 4H. Scatterplot of the simultaneous recordings from a front (x-axis) and a back (y-
axis) magnetoencephalogram SQUID sensor. 
 

 
Figure 4I. Histogram (panel 1) and Gaussian probability density estimate (panel 1, dashed 
curve) of the front SQUID sensor measurements. Histogram (panel 3) and Gaussian 
probability density estimate (panel 3, dashed curve) of the back SQUID sensor 
measurements. Q-Q (Probability) plot of the front SQUID sensor measurements (panel 2). 
Q-Q (Probability) plot of the back SQUID sensor measurements (panel 4, blue dots). The 
dashed line in panels 2 and 4 show the line of exact agreement between the SQUID 
measurements and the estimated Gaussian density. 
 
D. Independent Random Variables 
 
Definition 4.1. The random variables 1 2, ,..., nX X X  are independent if their joint cdf can be 
expressed as a product of their marginals. That is  
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 1 2
1

( , ,... ) ( )
i

n

n x i
i

F X X X F X
=

=∏  (4.38) 

 
or equivalently, their joint pmf’s for discrete random variables or their joint pdf’s for continuous 
random variables may be 
 

  1 2
1

( , ,..., ) ( ).
=

=∏ i

n

n x i
i

f X X X f X  (4.39) 

 
Remark 4.2. For a bivariate Gaussian probability density, if 0ρ =  the joint probability density is 
 

  

1 ( )2 21 1 x − µ ( )y − µy( ,x y) = x
2 2π ( )σ σ2 2 1 exp{− [ + ]}

2 σ σ2 2
x y x y

21 1 ( )x − µ 2 1 1= ( )
1
exp{− [ x ]}( )

1 (y − µ )
2 2 yexp{− ( )} 

2πσ 2 22 2 2 2 2
x xσ πσ y σ y

( ) ( ).= x y

f

f x f y

(4.40) 

 
and hence, we see the very important fact that if two Gaussian random variables are 
uncorrelated, or more generally,  n  Gaussian random variables are uncorrelated, then they are 
also independent. In general, if two random variables are uncorrelated, they are not 
independent. However, if two random variables are independent, they are uncorrelated. As 
stated in Lecture 1, independence is a strong condition. We will use an independence 
assumption frequently in constructing a joint probability density for the data in our statistical 
models. 
 
IV. Summary  
We have shown how to construct the probability densities for a transformation of a random 
variable. In addition, we have shown how to define joint probability densities for two or more 
random variables.  
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