White blood cell (e.g., neutrophil) scavenging: rolling, adhesion, and extravasation

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Man, Shumei, Eroboghene E. Ubogu, and Richard M. Ransohoff. "Inflammatory cell migration into the central nervous system: a few new twists on an old tale." Brain Pathology 17, no. 2 (2007): 243-250.

http://www.dnatube.com/video/4140/Leukocyte-Rolling-Adhesion

Cellular mechanical response to applied force

Image in the public domain.

Figure 7-6a Biological Science, 2/e

© 2005 Pearson Prentice Hall, Inc.

© Pearson Prentice Hall, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Neutrophils behave like Newtonian fluids!

FIGURE 3 Schematic of the convergent flow into the pipet and the in-plane stress resultants supported by the cortical shell.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Yeung, A. and E. Evans. "Cortical shell-liquid core model for passive flow of liquidlike spherical cells into micropipets." Biophysical Journal 56, no. 1 (1989): 139-149.

Abstract removed due to copyright restrictions. Source: Evans, E. and A. Yeung. "Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration." Biophysical Journal 56, no. 1 (1989): 151.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Evans, E. and A. Yeung. "Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration." Biophysical Journal 56, no. 1 (1989): 151.

.003 .005 .002

.005

.003 .003 .004

005

4:56:0

Chondrocytes are more like elastic spheres

Table 1 "Natural" SI units at the level of the cell

	"Micro SI"	Application
Distance (m)	1 μm (10 ⁻⁶ m)	All
Force	$1 \text{ pN}(10^{-12} \text{ N})$	Molecular bonds "soft" cells
(N)	1 nN(10 ⁻⁹ N)	Stiff cells
Pressure, stress	1 pN/µm ² (1 Pa)	Soft cells (blood cells)
(Pa)	1 nN/µm ² (1 kPa)	Stiff cells
Tension	1 pN/μm (10 ⁻³ mN/m)	Cortical elasticity of soft cells
(mN/m)	$1 \text{ nN/}\mu\text{m}(1 \text{ mN/m})$	Elasticity of lipid bilayer

Fig. 3. Comparison of a human neutrophil (a) to a chondrocyte (b). The neutrophil has a diameter of about 8 μ m while the majority of chondrocytes have diameters between about 12 and 16 μ m. The scale bars indicate 2 μ m, but note that the significant shrinkage of the cell has occurred during the preparation of the cells for scanning electron microscopy.

Fig. 4. A neutrophil and a chondrocyte each being aspirated into a micropipette. The photomicrographs of the chondrocyte are adapted from Jones et al. (1999). The scale bars indicate $5 \,\mu m$.

Hochmuth 2000

Complex fluids: Silly Putty

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Text about Silly Putty removed due to copyright restrictions.

Silly Putty t = 0 min

Silly Putty t = 30 min

Silly Putty t = 24 hours

Low Reynolds Number Flows

Text from "Osborne Reynolds" article on wikipedia removed due to copyright restrictions.

Painting by John Collier; in the public domain.

Text and photo from "G. I. Taylor" article on wikipedia removed due to copyright restrictions.

Low Reynolds Number Flows

Text and photo from "G. I. Taylor" article on wikipedia removed due to copyright restrictions.

Introduction to low Reynold's number flows (0–5:35)

Kinematic reversibility at low Reynold's number (13:17-17:33)

© Education Development Center, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Falling spheres at low Reynolds number

Class exercise:

- 1. Does a larger ball fall faster or slower than the smaller one?
- 2. How much faster, with a 2:1 diameter ratio?
- 3. Does a wall slow down the sphere, or not?

17:36-19:45

© Education Development Center, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Drag on spherical versus slender bodies

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Drag on rodlike bacteria versus spherical cells (21:11-25:00) Falling rods at low Re—difference in drag in two directions

© Education Development Center, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Does the rod fall vertically, or not?

Why or why not?

Self-propelling bodies, flapping versus rotating

25:07-28:55

© Education Development Center, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

MIT OpenCourseWare http://ocw.mit.edu

20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.