20.430 / 2.795 / 6.561 / 10.539

Fields Forces and Flows in Biological Systems

Fall 2015 Instructors: Mark Bathe, Alan Grodzinsky

Textbook:

Fields Forces and Flows in Biological Systems

Garland Science, March 2011

Book cover removed due to copyright restrictions. Source: Grodzinsky, Alan. Field, Forces, and Flows in Biological Systems. Garland Science, 2011.

<u>Plus</u>:

- Additional readings from primary (research) literature
- Supplementary materials throughout

20.430 Scope and Purpose

• Describes the <u>fundamental driving forces for transport</u>: chemical gradients, electrical interactions & fluid flow, applied to the biology and biophysics of molecules / cells / tissues

Philosophy of the Subject

- <u>Primary objective</u>: to integrate principles of coupling between chemical, electrical, & mechanical forces and flows intrinsic to tissues, membranes, macromolecules, and biomaterials.
- <u>Focus</u>: Topics in biology, biophysics & medicine motivate quantitative engineering approaches: molecular scale through complex structural organization of tissues and organs.
- Lectures focus on current problems in biology, biophysics, and medicine, and then use text material as the basis for understanding measurement, modeling, and analysis

FFF: Assignments and Grading

Homework: (~eight 1-week assignments during the term)

You are *encouraged to form teams* with other class members to discuss the underlying concepts and approaches. (Of course, the work turned in must be your own.)

Term Paper Project:

- Critical review of a journal article from the literature
- Collaboration: <u>Teams of 3 people</u>

Two take home quizzes: (~ middle and end of term)

Grading:Homework30%Term Paper Project30%Take Home Quizzes40%

Term Paper Project

Enzymatic Targeting of the Stroma Ablates Physical Barriers to Treatment of Pancreatic Ductal Adenocarcinoma

Cancer Cell 2012

Paolo P. Provenzano, ¹ Carlos Cuevas, ⁴ Amy E. Chang, ¹ Vikas K. Goel, ¹ Daniel D. Von Hoff, ⁵ and Sunil R. Hingorani^{1,2,3,*} ¹Clinical Research Division ²Public Health Sciences Division <u>Fred Hutchinson Cancer Research Center, Seattle</u>, WA 98109, USA ³Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA ⁴Department of Radiology, University of Washington, Seattle, WA 98195, USA ⁵Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA ^{*}Correspondence: srh@fhcrc.org DOI 10.1016/j.ccr.2012.01.007 Screenshot removed due to copyright restrictions. Source: Prof. Paolo Provenzano's website.

Cancer Research 2000

Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors

Paolo A. Netti,² David A. Berk,³ Melody A. Swartz,⁴ Rakesh K. Jain⁵

Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 [D. A. B., M. A. S., R. K. J.], and Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 [A. J. G.]

ABSTRACT

 The extracellular matrix may contribute to the drug resistance of a solid tumor by preventing the penetration of therapeutic agents. We measured differences in interstitial resistance to macromolecule (IgG) transport in 4 tumor types and found an unexpected correspondence between transport resistance and the mechanical stiffness.

•The interstitial diffusion coefficient of IgG was measured in situ by FRAP.....

Term Paper Project

Enzymatic Targeting of the Stroma Ablates Physical Barriers to Treatment of Pancreatic Ductal Adenocarcinoma

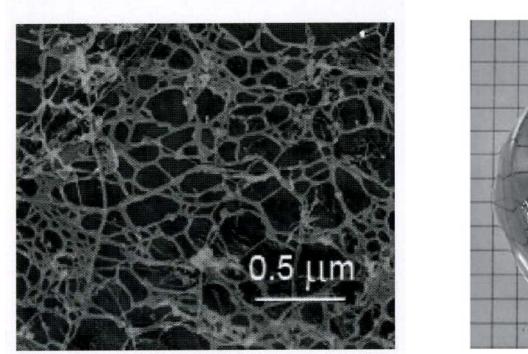
Cancer Cell 2012

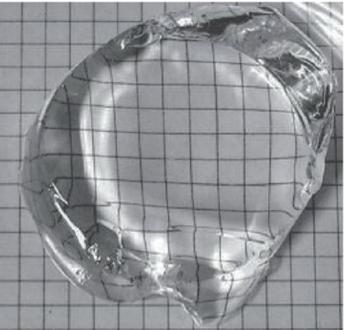
Paolo P. Provenzano,¹ Carlos Cuevas,⁴ Amy E. Chang,¹ Vikas K. Goel,¹ Daniel D. Von Hoff,⁵ and Sunil R. Hingorani^{1,2,3,*} ¹Clinical Research Division ²Public Health Sciences Division <u>Fred Hutchinson Cancer Research Center, Seattle</u>, WA 98109, USA ³Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA ⁴Department of Radiology, University of Washington, Seattle, WA 98195, USA ⁵Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA ^{*}Correspondence: srh@fhcrc.org DOI 10.1016/j.ccr.2012.01.007

Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer British J of Cancer

P P Provenzano^{1,4} and S R Hingorani^{*,1,2,3}

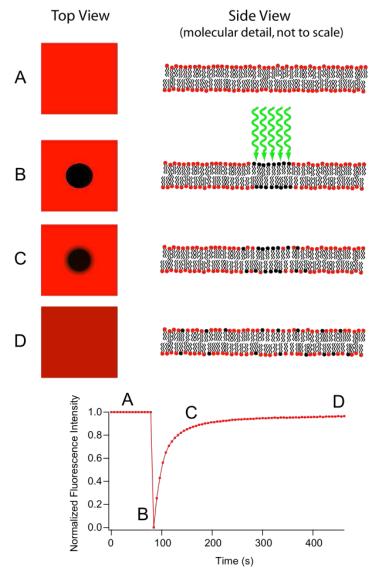
¹Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; ²Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; ³Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA

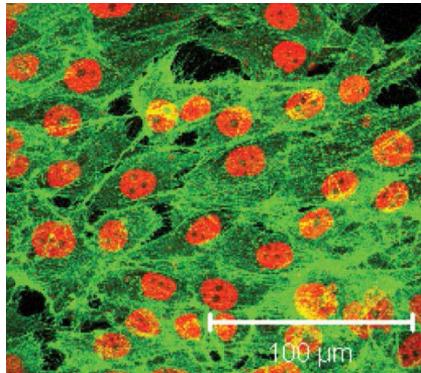

2013


Fields Forces & Flows: Syllabus

- I. CHEMICAL SUBSYSTEM
- **II. ELECTRICAL SUBSYSTEM**
- **III. MECHANICAL SUBSYSTEM**
- **IV. INTEGRATIVE CASE STUDIES: PHYSICOCHEMICAL, BIOPHYSICAL**

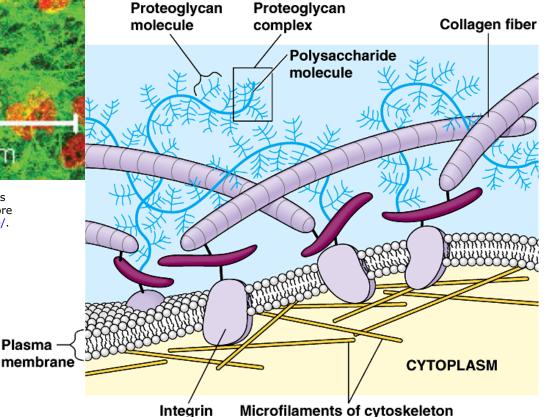
Lect	Date	Торіс			
1	Sep 9	Course introduction, overview, and objectives			
	I. CHEMICAL SUBSYSTEM				
2	Sep 14	Diffusion as a random walk; Stokes-Einstein relation for diffusion coefficient; Examples of diffusion			
3	Sep 16	Constitutive equations for diffusion (Fick's Laws); Conservation of mass for a control volume; Differential form; Steady diffusion (1D); Boundary conditions			
4	Sep 21	Diffusion and reaction; Reaction rates, order, molecularity and mechanisms; Scaling and the Damköhler number; Solution procedures			
5	Sep 23	Examples of diffusion-reaction: Diffusion of a ligand through tissue with cell receptor-ligand interactions; Diffusion-reaction kinetics			
6	Sep 28	More examples of diffusion-reaction			
7	Sep 30	Case study: IGF-1 diffusion-reaction within tissues and cell seeded scaffolds; binding to IGF binding proteins & cell surface receptors; experimental methods			


Solute Flow in & across "Bio Porous Materials: Molecular Networks, Gels....

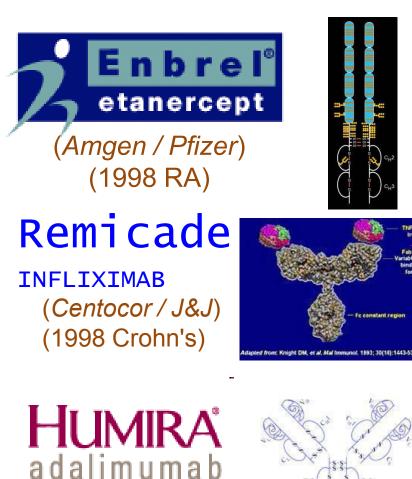


© Sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

"Measure and Model": Find Diffusivity D_i



Courtesy of MDougM; in the public domain.


© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

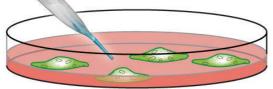
Growth factors (e.g., IGF-1) and cytokines (e.g., TNFα) can bind to Extracellular Matrix molecules as well as cell receptors

© Pearson Education, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

"Biologic" TNF-α Blockers: >\$20 Billion/year

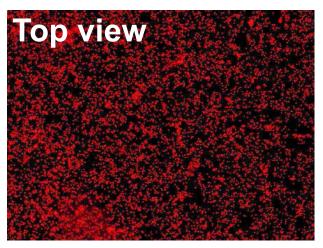
Autoimmune-Inflammatory Diseases

- Rheumatoid Arthritis
- Crohn's Disease (IBD)
- Ulcerative Colitis (IBD)
- Ankylosing Spondylitis
- Psoriatic Arthritis
- Psoriasis


© Various sources. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

(Abbott)

(2002 RA)

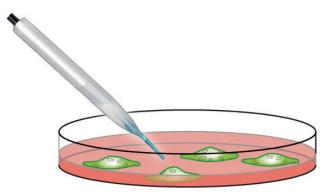

Effects of a cell signaling (kinase) blocker (Merck BI-78D)

Several Applications: diabetes; purposely induce cell death (apoptosis) in tumors

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

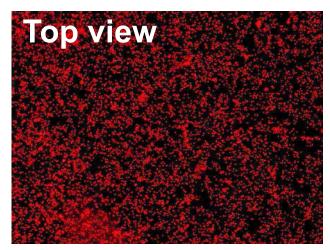
Monolayer cell culture

Day 1 of culture

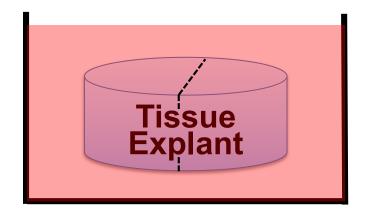

© Sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

 Added kinase inhibitor on Day 0

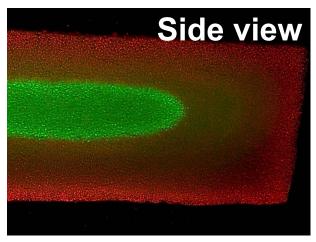
• Use fluorescent markers to assess cell viability:


RED = Dead cells GREEN = Live cells

Effects of a cell signaling (kinase) blocker (Merck BI-78D)


© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

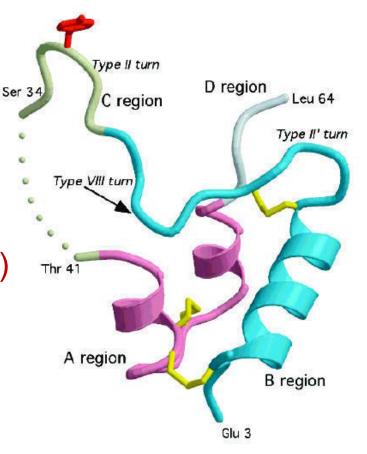
Monolayer cell culture



Day 1 of culture

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Tissue with same cells

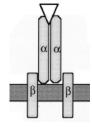


Day 6 of culture

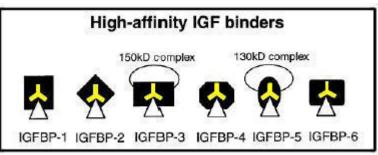
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Insulin-like Growth Factor-1 (IGF-1)

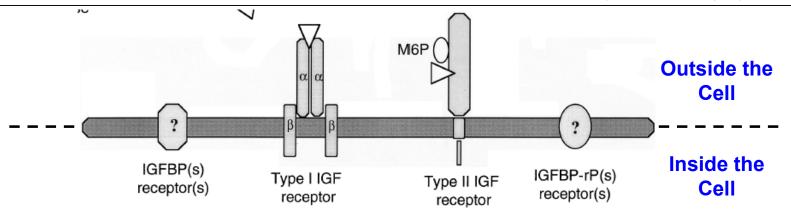
- Peptide Growth Factor:
 - Stimulates cellular biosynthesis;
 - Inhibits catabolic degradation of ECM
 - Anti-Apoptotic
- Protein: 7.6 kDa (70 amino acids)
- "Folds" like Insulin in Aq. Solution
- pl ~ 8.4 ("basic" + charged @ pH 7)
- Found in: Nerve, Muscle, Connective, & Epithelial Tissues
 - Serum (50-200 ng/ml)
 - Joint Fluid (20-50 ng/ml)
 - Tissue (1-10 ng/ml)
 - CSF; Brain (~5 ng/ml; ~5 pg/mg)



© American Chemical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Vajdos, Felix F. et al. "Crystal structure of human insulin-like growth factor-1: detergent binding inhibits . binding protein interactions." Biochemistry 40, no. 37 (2001): 11022-11029.



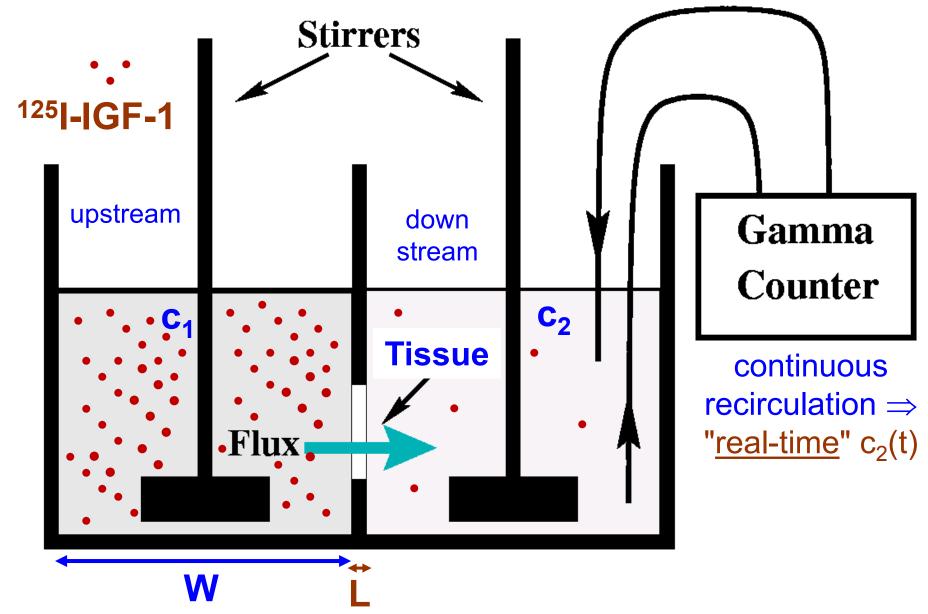
Original image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


_____ IGF-I/II

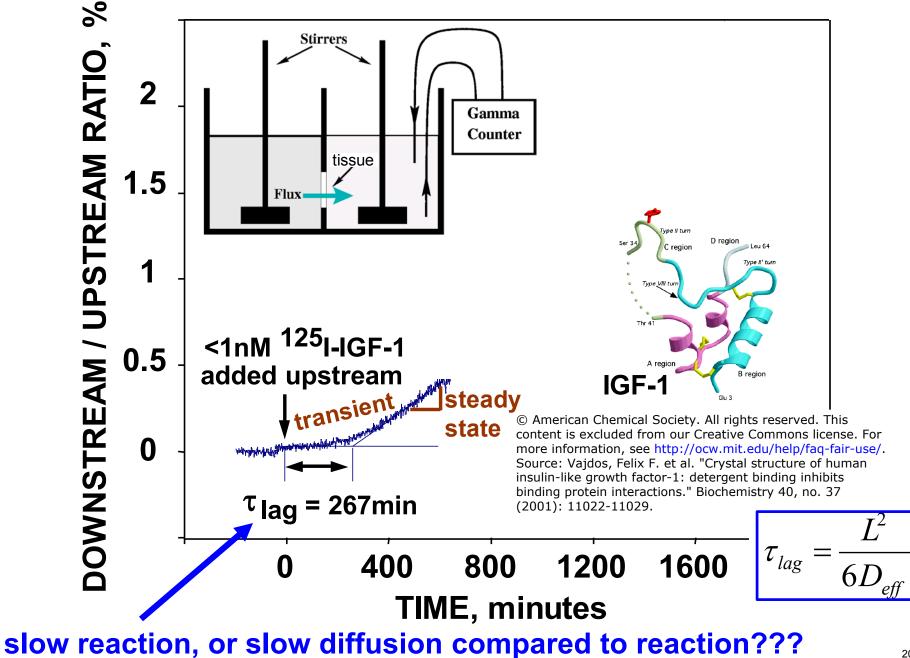
Type I IGF receptor

Original image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Original image © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice PNAS 2009

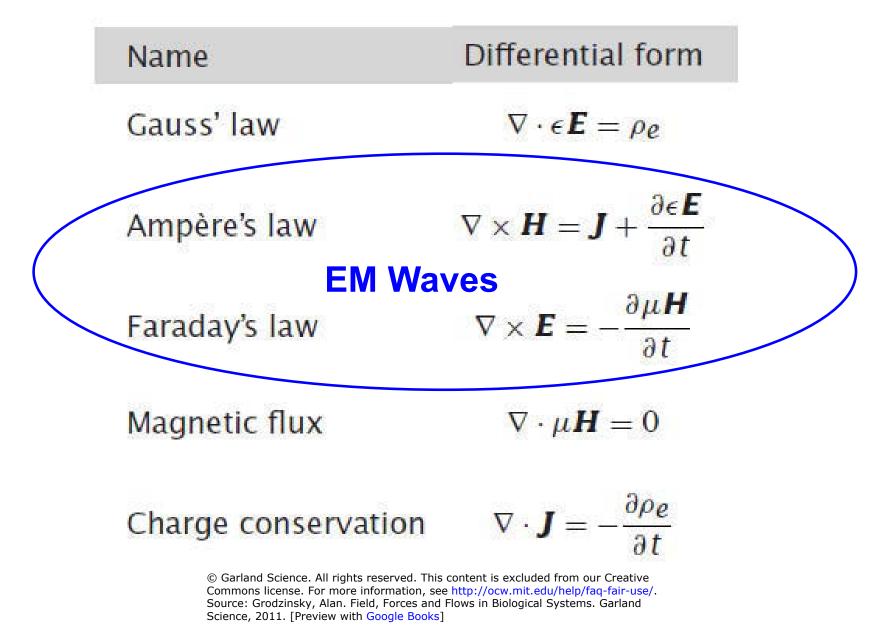
Daniela Tropea^{a,1}, Emanuela Giacometti^{b,1}, Nathan R. Wilson^{a,1}, Caroline Beard^b, Cortina McCurry^a, Dong Dong Fu^b, Ruth Flannery^b, Rudolf Jaenisch^{b,c,2}, and Mriganka Sur^{a,2}


^aPicower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; ^bWhitehead Institute for Biomedical Research, Cambridge, MA 02142; and ^cDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

 Rett patients express aberrantly high levels of IGFBP3, which inhibits IGF-1 signaling. Depressed IGF-1 signaling has indeed been implicated in <u>autism spectrum disorder</u>

Experimental Setup: Transport

IGFBP-3 Binding Slows entry of IGF-1 into Tissue!



 E-fields and transport; Maxwell's equations for electric & magnetic fields Define electrical potential; conservation of charge; Electro-quasistatics Laplacian solutions via Separation of Variables; Electric field boundary conditions; Ohmic transport; Charge Relaxation; Electrical migration vs. chemical
Laplacian solutions via Separation of Variables; Electric field boundary
diffusive fluxes
Electrochemical coupling; Electrical double layers; Poisson–Boltzmann Equation
Donnan equilibrium in tissues, gels, polyelectrolyte networks
Charge group ionization & electro-diffusion-reaction in molecular networks
Case study: Insulin-like growth factor-1 transport in tissues & cell-seeded gels;

(Chap 2): E-fields

- What are sources of <u>E</u> fields
- Where do they come from
- What can <u>E</u> do (applications)

Table 2.7 Maxwell's equations for linear media.

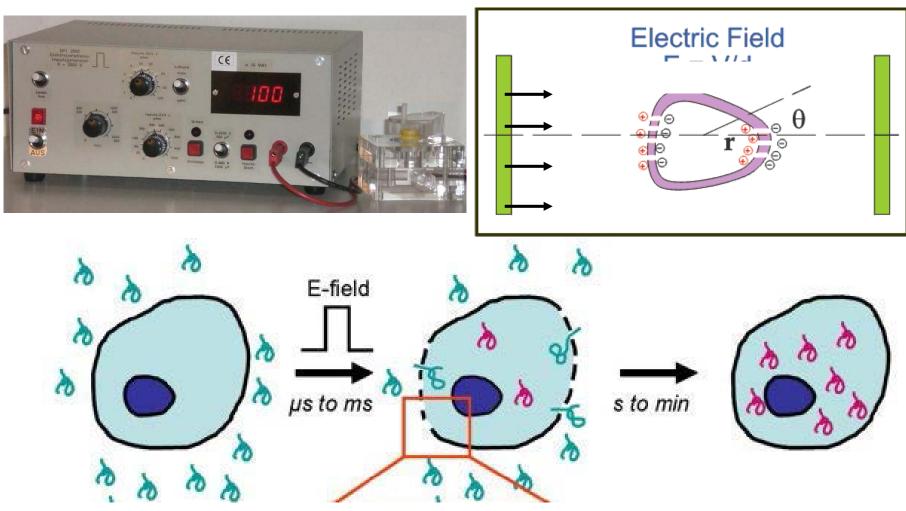
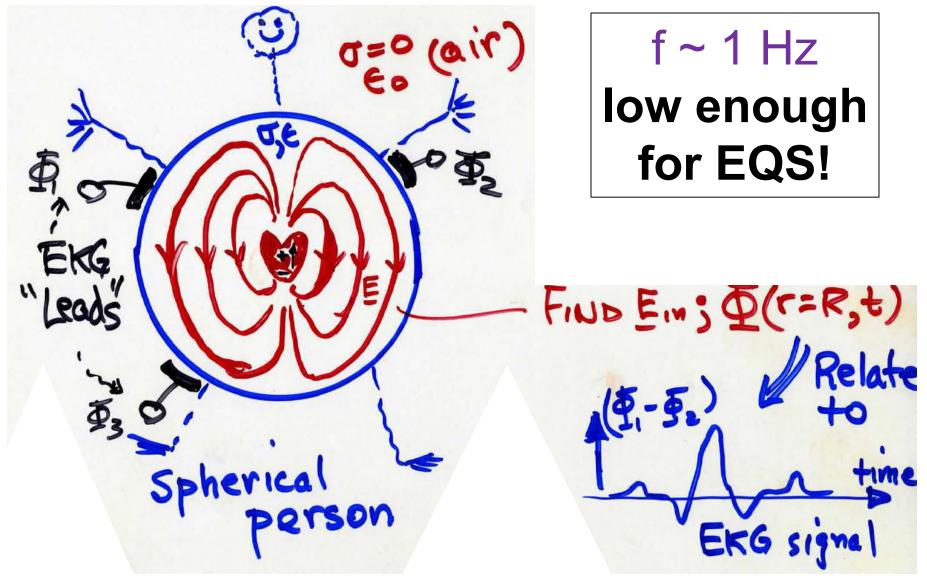
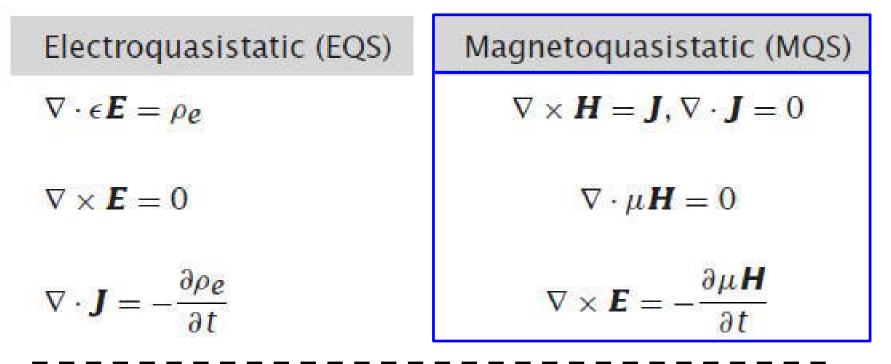


Table 2.8 Quasistatic laws for linear media.

Electroquasistatic (EQS)	Magnetoquasistatic (MQS)
$\nabla \cdot \epsilon \mathbf{E} = \rho_{\mathbf{e}}$	$\nabla \times \boldsymbol{H} = \boldsymbol{J}, \nabla \cdot \boldsymbol{J} = 0$
$\nabla \times \boldsymbol{E} = \boldsymbol{0}$	$\nabla \cdot \mu \boldsymbol{H} = 0$
$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho_{\boldsymbol{e}}}{\partial t}$	$\nabla \times \boldsymbol{E} = -\frac{\partial \mu \boldsymbol{H}}{\partial t}$


[+ Ohmic Constitutive Law $(J = \sigma E)$]

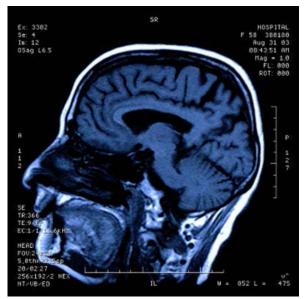
© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books] Electroporation: transient permeabilization of cell membrane for gene transfection/therapy; drug delivery; tumor treatment, and cell-based therapy



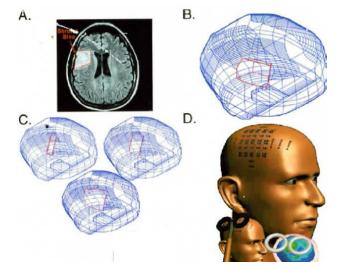
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

EKG: Centric Dipole Model of the Heart

Table 2.8 Quasistatic laws for linear media.

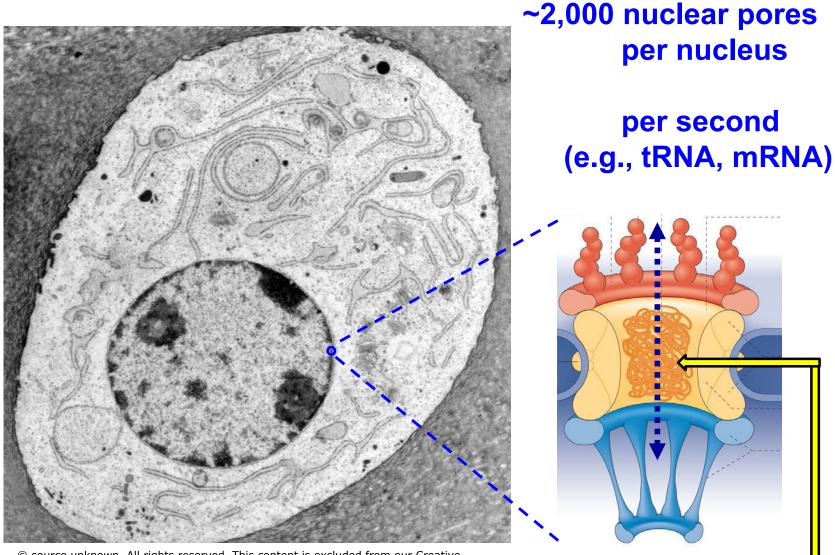

[+ Ohmic Constitutive Law $(J = \sigma E)$]

© Garland Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Grodzinsky, Alan. Field, Forces and Flows in Biological Systems. Garland Science, 2011. [Preview with Google Books]


MRI

© HowStuffWorks.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Luis Carlos Torres / istockphoto. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

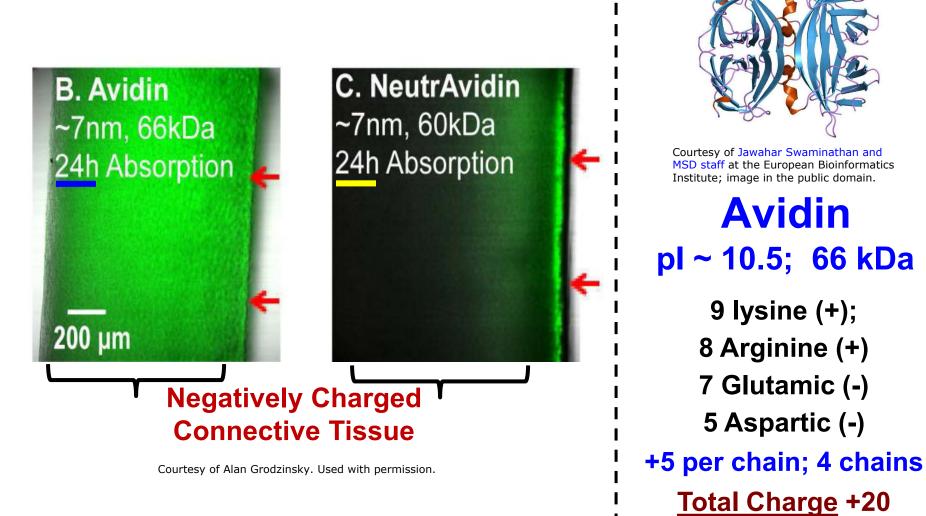


Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Wagner, Tim et al. "Transcranial magnetic stimulation and stroke: a computer-based human model study." Neuroimage 30, no. 3 (2006): 857-870.

Deep Brain Stimulation via B-fields

Chap 3: Electrochemical Interactions & Transport Effects of "Ligand" Molecular Charge on:

- <u>Boltzmann Partitioning</u> into charged tissues, gels
- Binding (to ECM / ICM, receptors....)
- <u>Non-Equil Diffusion</u> (D_{eff}): do E-effects speed up or slow down transport?
- <u>"Donnan" Osmotic Pressure</u> in tissues/gels/cells

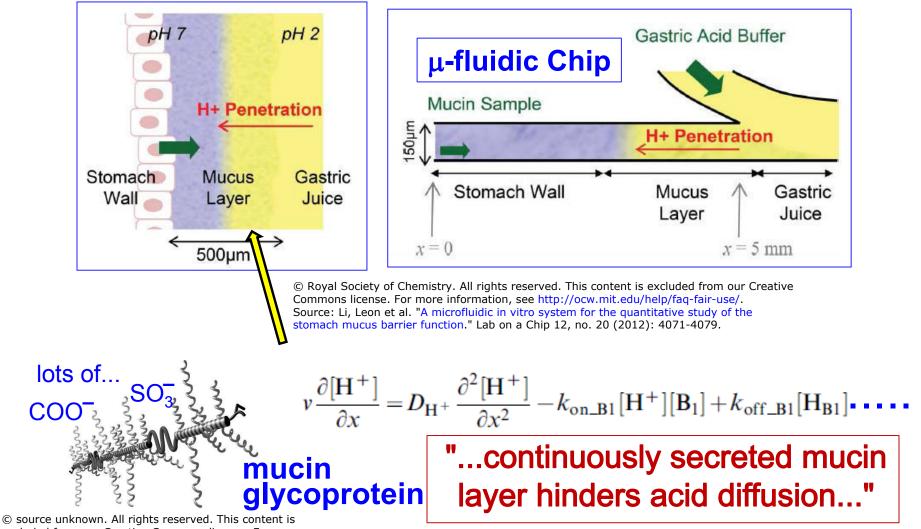

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Raices, Marcela, and Maximiliano A. D'Angelo. "Nuclear pore complex composition: a new regulator of tissuespecific and developmental functions." Nature Reviews Molecular Cell Biology 13, no. 11 (2012): 687-699.

"Hydrophilic" : lots of lysines (+ charge)

Avidin uptake into dense negative extracellular matrix:

- Functionalize drugs to (+) nanoparticles, to target tissues



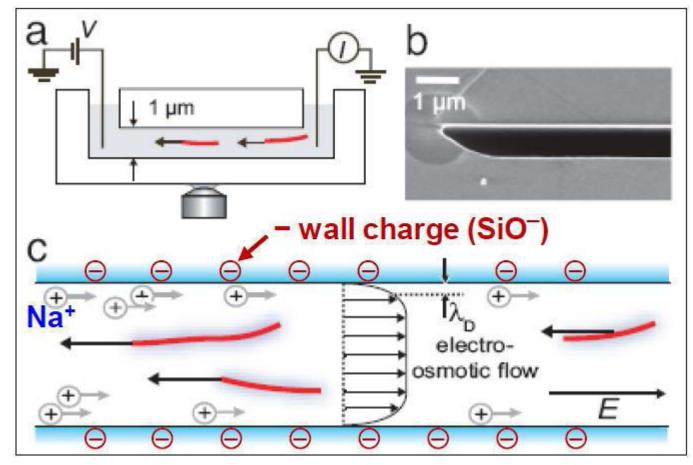
Lect Date III. MECHANICAL SUBSYSTEM					
15	Oct 28	Conservation of mass and momentum in fluids			
16	Nov 2	Viscous stress-strain rate relations; Navier-Stokes equations; examples			
17	Nov 4	Low Reynolds number flows; Stokes equation; Scaling and dimensional analysis; examples			
18	Nov 9	Newtonian, fully developed low Reynolds number flows; Stokes drag on sphere			
19	Nov 16	Diffusion and convection; The Peclet number; Convection-diffusion-reaction and boundary layers			
20	Nov 18	Concentration boundary layers: fully-developed flow and transport			

A microfluidic *in vitro* system for the quantitative study of the stomach mucus barrier function

Leon Li,^{*ab*} Oliver Lieleg,^{†*c*} Sae Jang,^{*d*} Katharina Ribbeck^{**c*} and Jongyoon Han^{**bc*}

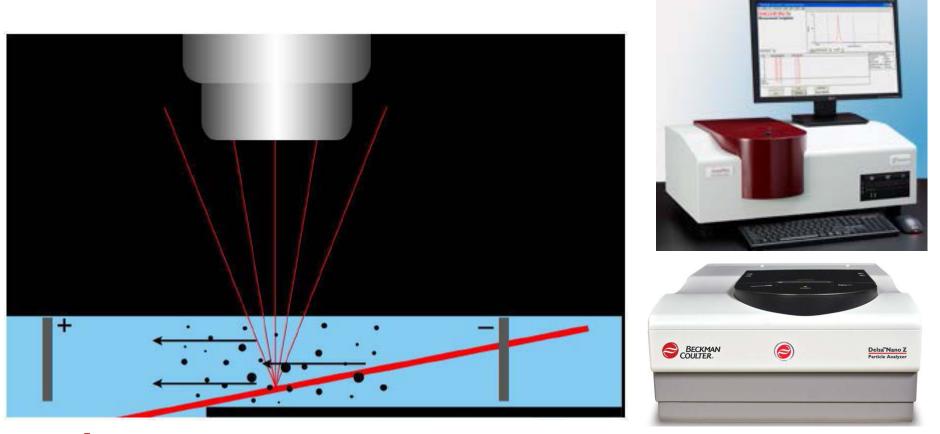
2012 Lab on a Chip

excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.


IV. INTEGRATIVE CASE STUDIES: PHYSICOCHEMICAL, BIOPHYSICAL INTERACTIONS

Lect	Date	Торіс
21	Nov 23	Electrokinetics: Capillary electroosmosis: theory and experiments
22	Nov 25	MEMs, microfluidics, cell membranes and hydrogels
23	Nov 30	Electrophoretic motion: proteins in gels, tissues, molecular networks, & membranes; zeta potential
24	Dec 2	DLVO theory: double layer repulsion and Van der Waals interactions (DNA, RNA, proteins, glycoproteins, GAGs: macromolecular interactions
25	Dec 7	Porous media flows: extracellular and intracellular
26	Dec 9	Cell/molecular electrokinetics; review of term paper project

Electrophoresis of individual microtubules in microchannels PNAS 2007


M. G. L. van den Heuvel, M. P. de Graaff, S. G. Lemay, and C. Dekker*

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands

Courtesy of National Academy of Sciences. Used with permission. Source: Van den Heuvel, M. G. L. et al. "Electrophoresis of individual microtubules in microchannels." Proceedings of the National Academy of Sciences 104, no. 19 (2007): 7770-7775.

Zeta Potential (particle charge) Instruments

(applied electric field)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Measure " ζ " \rightarrow Infer effective particle charge

Text from article removed due to copyright restrictions. Source: Gelbert, William M. et al. "DNA-Inspired Electrostatics." Physics Today. 53:9 (2000): 38. 20.430J / 2.795J / 6.561J / 10.539J Fields, Forces, and Flows in Biological Systems $\mathsf{Fall}\ 2015$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.