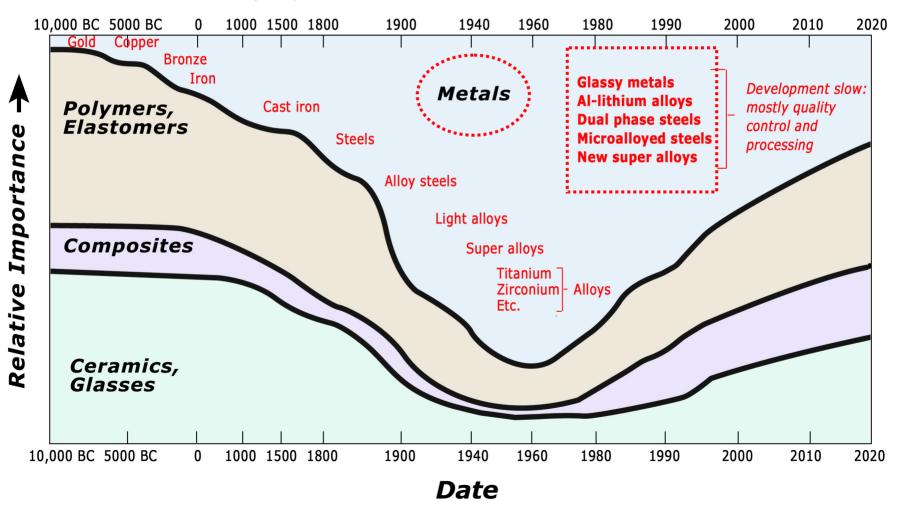
4.461: Building Technology 1 CONSTRUCTION AND MATERIALS	SCHOOL OF ARCHITECTURE AND PLANNING: MIT				
Professor John E. Fernandez	Metals				

- Introduction
- Material Properties and Structural Morphology
 - i. Wood
 - ii. Masonry
 - iii. Metals
 - iv. Fabric
 - v. Composites
- Part II: Metal Systems and Architecture
- Transparencies
- Part III: New Materials and Systems
- Stainless Steels
- Panelized systems
- Part IV: Resource Efficiency
- Embodied energy
- Sustainable practice

Metals


- Part I: Metals in Architecture
- Introduction
- Structure and skin

Metals

Part I: Metals in Architecture

- Introduction
 - i. Historical trajectory

Introduction: Steel
Landmark developments

i.	Historical
	trajectory

1777-79 1780-1820	First Cast iron bridge built in England Numerous cast bridges built, arch-shaped with main girders of individual cast iron pieces forming bars or truss
~1800	Industrial production of rolled shapes begins in England
1840	Wrought iron begins to replace cast iron
1846-50	Brittania bridge over Menai Straits in Wales
1870s	I-shapes rolled
1855	Development of the Bessemer process
1870	Introduction of basic liner in the Bessemer converter
1890	Steel permanently replaces wrought iron as principal building material
Currently	Steels having yield stresses varying from 24,000 to 100,000 psi are readily available

Metals

Part I: Metals in Architecture

 Material Properties and Applications of various steels

Three types

- 1. Carbon steels
- 2. High-strength low-alloy steels
- 3. Alloy steels

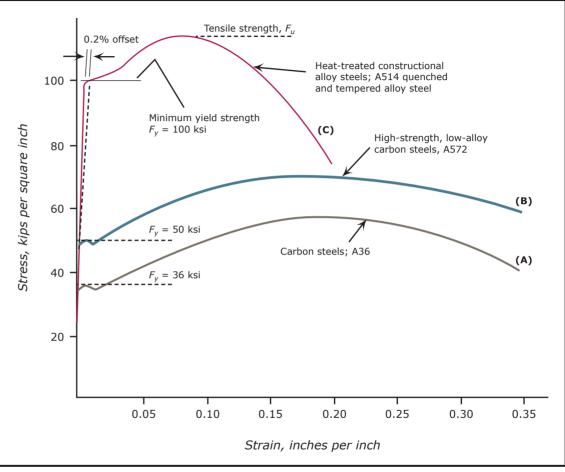
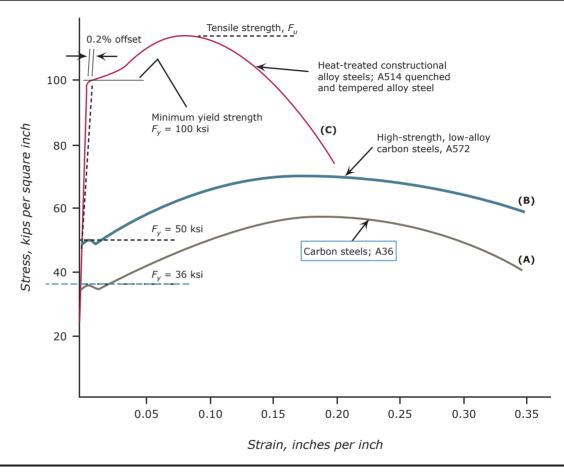


Image by MIT OCW.

Typical stress-strain curves


 Material Properties and Applications of various steels

Carbon steels

Carbon steels are divied into four categories depending on the percentage of carbon:

- Low carbon: less than 0.15%
- Mild carbon: 0.15-0.29
- Medium carbon: 0.30-0.59%
- High carbon: 0.60-1.70%

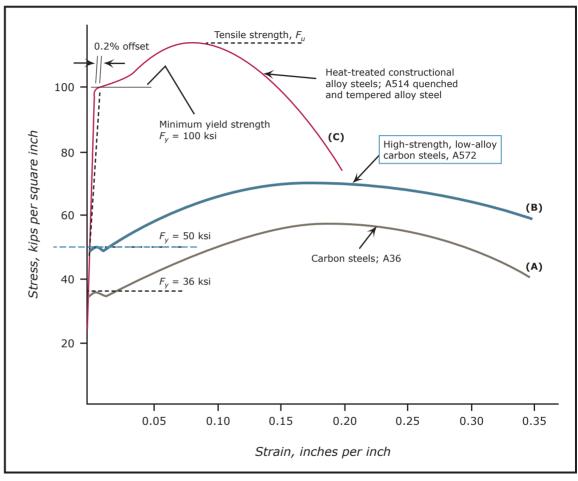
Structural carbon steels are in the mild category: A36 has max. carbon from 0.25-0.29%. Increased carbon percent raises the yield stress but reduces ductility and makes welding more difficult.

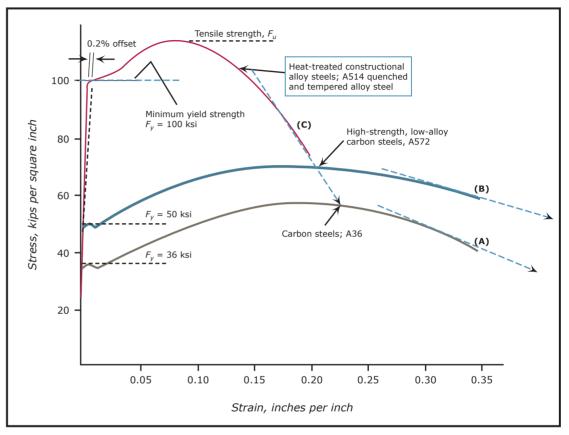
 Material Properties and Applications of various steels

High-strength low-alloy steels

The addition to carbon steels of small amounts of alloy elements such as chromium, columbium, copper, manganese, molybdenum, nickel, phosphorous, vanadium, zirconium improves some of the mechanical properties. Additional strength is obtained through a fine-grained crystalline microstructure as opposed to the course graining of simple carbon steel.

This type of steel yields at stresses from 40-70 ksi.




Image by MIT OCW.

 Material Properties and Applications of various steels

Alloy steels

Low-alloy steel may be quenched and tempered to obtain yield strengths of 80 – 110 ksi. Maximum carbon content of 0.20% to limit the hardness of any coarse-grain microstructure.

The heat treatment consists of quenching [rapid cooling with water or oil from at least 1650 F to about 300-400 F], then tempering by reheating to at least 1150 F and allowing to cool. Tempering greatly improves toughness and ductility.

• Material Properties and Applications of various steels

A36 carbon	General structural purposes, bolted and welded. Mostly for buildings.
A53 carbon	Welded and seamless pipe
A500 carbon	Cold-formed welded and seamless round, square, rectangular, or special shape structural tubing for bolted and welded general structural purposes.
A501 carbon	Hot-rolled welded and seamless round, square, rectangular, or special shape structural tubing for bolted and welded general structural purposes.
A514 alloy	Plates in thickness of 6 in. and under, primarily for welded bridges.
A588 High S., Low A.	Structural shapes, plates and bars for welded buildings and bridges where weight savings or added durability are needed; atmospheric corrosion resistance is about four times that of A36 steel.
A913 High S., Low A.	Structural shapes for bolted and welded construction.

 Material Properties and Applications of various steels

Corrosion

Self-weathering steels have been widely adopted for conditions in which the surface of the steel is exposed to the weather. These steels are typically A588 for buildings and A709 for bridges.

Several rules are important to note:

- 1. For optimum performance in the unpainted condition, the structure should be boldly exposed to the weather.
- 2. The development of the protective oxide film is best achieved under normal exposure, wherein the surfaces are wet at night by dew formation and dry during daylight hours.
- 3. Because this wet-dry cycle cannot occur when the steel, regardless of its grade, is buried in the soil or immersed in water, the protective oxide will not form and the performance will resemble that of mild steel carbon exposed to the same conditions.

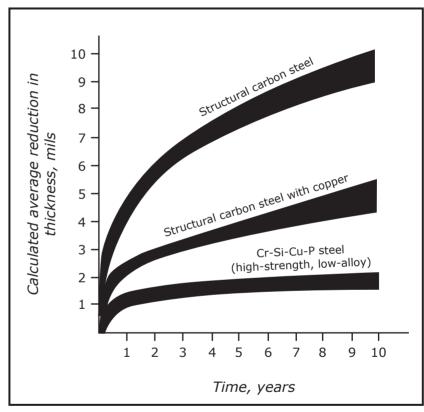
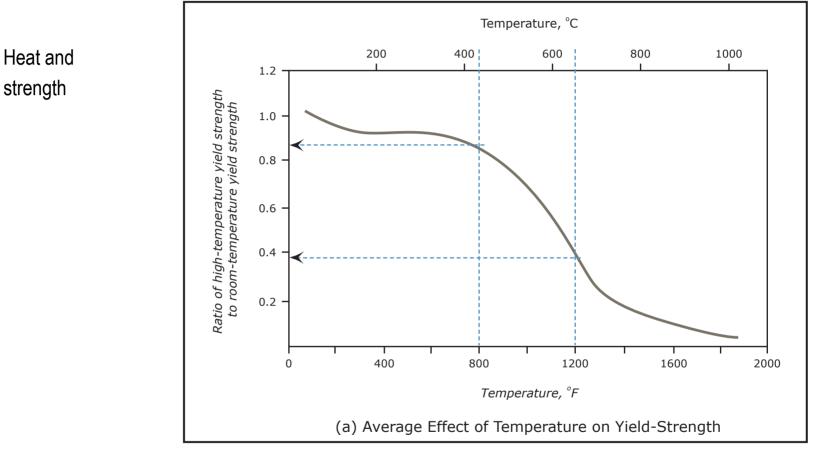
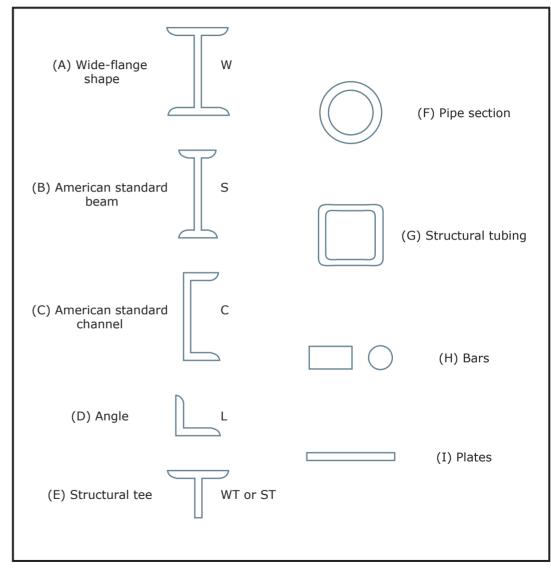


Image by MIT OCW.

Metals




Image by MIT OCW.

Types of Structural Steel
Members

American Institute of Steel Construction (AISC) American Society for Testing and Materials (ASTM) A6 Specification

Standard Hot-Rolled shapes

- 1. Wide-flange shape
- 2. American standard beam
- 3. American standard channel
- 4. Angle
- 5. Structural tee
- 6. Pipe section
- 7. Structural tubing
- 8. Bars
- 9. Plates

Types of Structural Steel
Members

American Institute of Steel Construction (AISC) American Society for Testing and Materials (ASTM) A6 Specification

Standard Cold-Rolled shapes

- 1. Channels
- 2. Zees
- 3. I-Shaped double channels
- 4. Angle
- 5. Hat sections

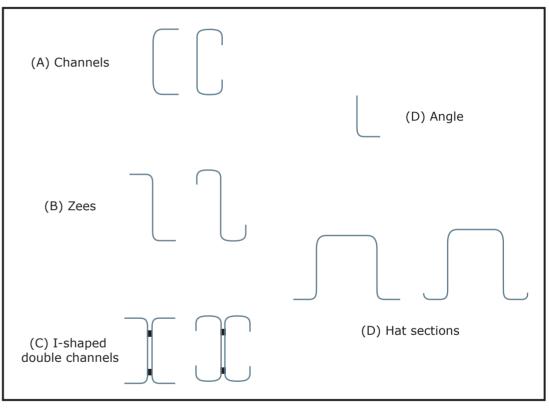
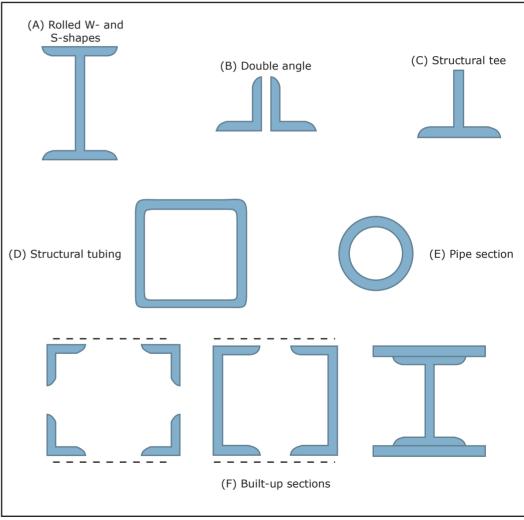
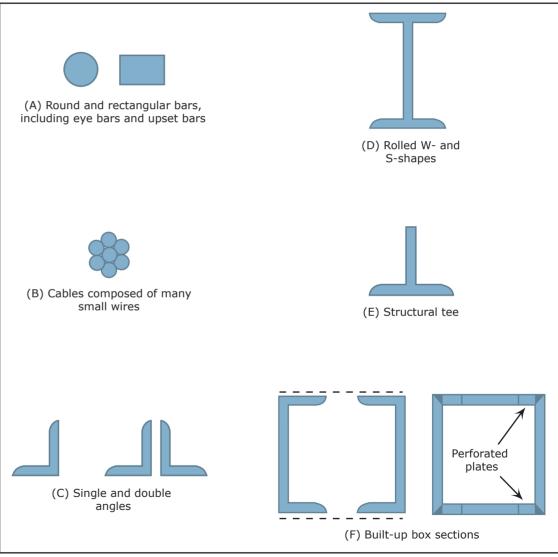
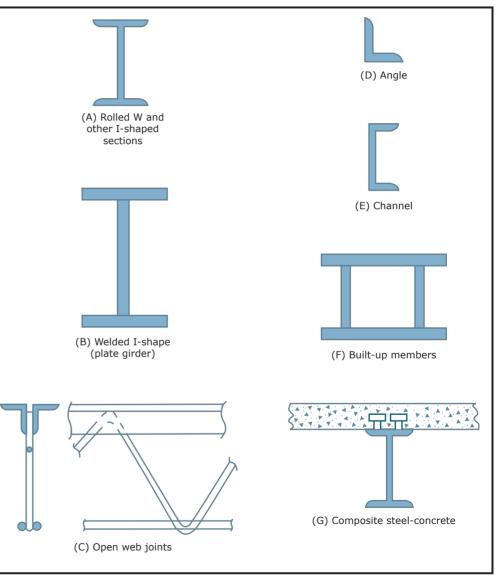
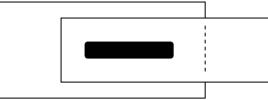




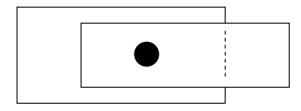
Image by MIT OCW.


• Typical compression members

• Typical tension members

• Typical beam members

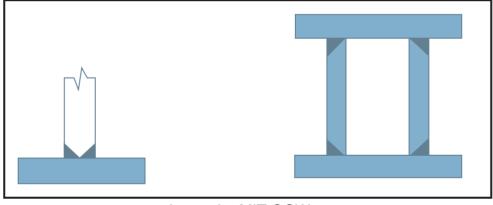


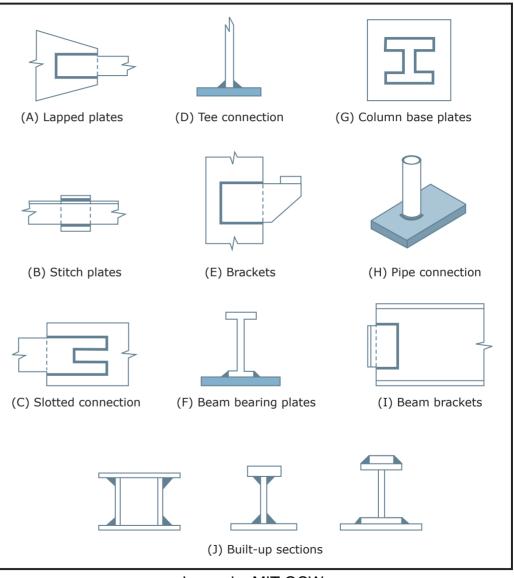

Metals		
	Motolo	
	WIELDIS	

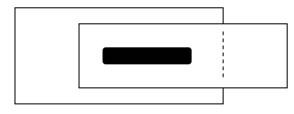
- Bolts
- Welds

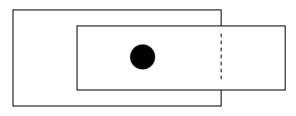
- Welds
- 1. Groove: connect structural members in the same plane or orthogonal planes.
- 2. Fillet: most commonly used to connect structural members not in the same plane
- 3. Slot and Plug: for member connections that need extra strength in shear

Examples of groove welds




Image by MIT OCW.


Groove welds in tee joints


Metals

Part I: Metals in Architecture Joints

Examples of fillet welds

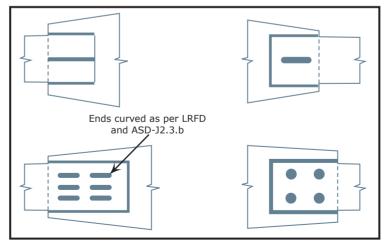


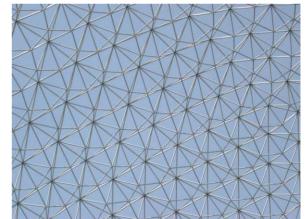
Image by MIT OCW.

Metals	
IVICIAIS	

Standard welding symbols

				Basic We	ld Symbols					
		Dive		Groove or Butt						
Back	Fillet	Plug or Slot		v	Bevel	U	J	Flare V	Flare Bevel	
D	\square				V	$ \downarrow \rangle$	Y		1	
				Supplementar	y Weld Syr	nbols				
		ć			Contour			For other basic and		
Backing	Spa	lcer	Weld All Around	Field Wel	ld Flu	Flush		supplementary weld symbols, see AWS A2.4		
			\bigcirc				\frown			
	- L-									

- Structural Morphology
 - i. Framed structures
 - ii. Shell-type structures
 - iii. Suspension-type structures
 - iv. Tube structures towers (lattice) bridges (plates)



- Structural Morphology
 - i. Framed structures
 - ii. Shell-type structures
 - iii. Suspension-type structures
 - iv. Tube structures towers (lattice) bridges (plates)

Gewachshaus Dusseldorf Karl Krass

Images courtesy of Nicolas Janberg, photographer, and Structurae

- Structural Morphology
 - i. Framed structures
 - ii. Shell-type structures
 - iii. Suspension-type structures
 - iv. Tube structures towers (lattice) bridges (plates)

Millenium Bridge, London Sir Anthony Caro and Lord Norman Foster

Image courtesy of Guido Morgenthal, photographer, and Structurae

- Structural Morphology
 - i. Framed structures
 - ii. Shell-type structures
 - iii. Suspension-type structures
 - iv. Tube structures towers (lattice) bridges (plates)