
16.90: Project #3
Probabilistic Simulation of a Baseball Batter

Solution

1 Background

In this project you are the statistician for the Boston Red Sox. The batting and pitching coaches want
to better understand the results of three different pitches—a high fastball, a sinking fastball, and a “12-6”
curveball. Using a Monte Carlo analysis, you will determine the probability that these pitches will result in
a ground ball, line drive, fly ball, and home run.

1.1 Baseball Dynamics

Figure 1: Schematic of the baseball dynamics after the ball has been hit, adapted from [1].

Provided for you is the function bb dyn.m that calculates the trajectory of the baseball after it leaves
the bat 1. The inputs into this function are the velocity of the ball (vball, mph), the velocity of the bat (vbat,
mph), the angle the ball leaves the bat (θ, deg), the wind velocity (vwind, mph), and the spin of the ball (ω,
rpm). The total velocity of the baseball is a function of time and is defined as

vtot(t) =
√
vx(t)2 + vy(t)2, (1)

where vx and vy are the x and y-components of the velocity as shown in Figure 1. The total velocity of the
ball as it leaves the bat, vtot(t = 0), is determined by the equation

vtot(0) = eavball + (1 + ea)vbat, (2)

where ea is the collision efficiency and is a function of the energy dissipation and recoil of the bat. We assume
for this analysis that each pitch is hit by the batter. The trajectory of the baseball during flight is affected

by the force due to the drag on the baseball (
→
FD), the Magnus force due to the spin of the ball (

→
FM ), and

the force due to gravity (
→
F g) as shown in Figure 1. Note that the Magnus force acts in the

→
ω × →

v direction.
During this analysis we assume that the trajectory of the ball is in the xy-plane and that there is no sidespin

on the ball. Thus the spin,
→
ω, only has a z-component, which we call ω. The degrees of freedom of the

 

© American Association of Physics Teachers. All
rights reserved. This content is excluded from our
Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

1Acknowledgements to Professor Stirling for writing the baseball dynamics analysis code.

1

http://ocw.mit.edu/help/faq-fair-use/


baseball are the distance from the batter (x) and the height off the ground (y). The acceleration of the ball
can then be written as[

ax
ay

]
1

=
m

[
− 1

2ρACdvtot(vx − vwind) − 1
2ρARCmωvy

− 1
2ρACdvtotvy + 1 ,

ρARCmω(vx − vwind)2 −mg

]
(3)

where vx is the x-component of the velocity, vy is the y-component of the velocity, vtot is the magnitude of
the velocity, g is gravity, Cd is the drag coefficient, Cm is the Magnus coefficient, A is the cross-sectional
area of the ball, R is radius of the ball and ρ is the density of the air.

The code computes the trajectory of the ball as a function of time. The function returns the x-distance
(ft) travelled by the ball from the bat, the y-distance (ft) travelled by the ball from the bat, and the time
(sec), all for each timestep simulated.

Please see the comments in the Matlab code bb dyn.m, which describe in detail the form of the function
inputs and outputs.

1.2 Pitch Details and Batted Ball Categories

The fastball is a common type of pitch in baseball. Fastballs generally have backspin (i.e., a positive ω),
which causes an upward force on the ball. A curveball is a breaking pitch with topspin (i.e., a negative ω)
causing a downward force on the ball, which gives an increased drop in the motion of the ball. A “12-6”
curveball has a downward action as it goes toward the plate.

There are four main categories used to describe batted balls—ground balls, line drives, fly balls, and
home runs. For the purposes of this assignment, we will use the following definitions.

• Ground ball: A ball that rolls on the ground. The maximum height of the ball after it is hit never
exceeds 4 ft.

• Line drive: This is a hard hit low-flying batted ball. The maximum height is less than 10 ft, but greater
than 4 ft.

• Fly ball: A ball that is hit into the air, usually fairly high. For this project, consider a fly ball any ball
that is hit such that the maximum height is greater than 10 ft, but is not a home run.

• Home run: A ball that cannot be caught in the field of play. We will assume that the centerfield fence
is 400 feet away and 8 feet high.

1.3 Input Variability

We will assume that each of the inputs to the baseball dynamics code (vwind, vbat, vball, θ, and ω) can be
modeled with a triangular distribution. The distribution parameters for each variable are given in Table 1.
The ranges provided for the types of pitches correspond to the pitch definitions. For example, a high fastball
will typically have a higher angle of the ball leaving the bat with a positive spin on the ball and a sinking
fastball will typically be hit at a lower angle off the bat.
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Table 1: Input variabilities are modeled with triangular distributions, where xmin is the minimum value,
xmpp is the most probable value, and xmax is the maximum value.

Variables xmin xmpp xmax

vwind (mph) -25 0 25
vbat (mph) 0 78 100

High Fastballs
vball (mph) 86 90 100
θ (deg) 20 35 89
ω (rpm) 0 2000 4000

Sinking Fastballs
vball (mph) 86 90 100
θ (deg) -15 0 15
ω (rpm) 0 2000 4000

Curveballs
vball (mph) 67 77 92
θ (deg) -15 10 50
ω (rpm) -4000 -2000 0

2 Project Requirements

2.1 Estimation of the Batted Ball Results

Implement a Monte Carlo analysis to determine the probability of ground balls, line drives, fly balls, and
home runs for each pitch type. Specifically,

1. Develop well-commented Matlab scripts to implement the Monte Carlo analysis for this problem.

• You will need to insert code into the function trirnd.m to draw a random sample from a triangular
distribution.

• You will need to write a code to conduct the Monte Carlo simulation and perform the required
analyses.

• The function bb dyn.m will be called inside your Monte Carlo loop but does not need to be
modified.

2. Estimate the probability of of a ground ball, line drive, fly ball, and home run for each of the three
pitch types. For each probability estimate (you will have 12 estimates) choose a sample size so that
your estimate is at least ±0.01 at 99% confidence.

Solution: For each pitch type we run a Monte Carlo simulation. For each draw of the random inputs,
we record the resulting hit type (ground ball, line drive, fly ball, or home run). The probability of
each hit type is then estimated by computing the number of occurrences of that hit divided by the
total number of samples. To determine the necessary Monte Carlo sample size, we need to consider the
statistical properties of the probability estimator. Denote the probability we are trying to estimate by
p, and our estimator by p̂. As discussed in class, p̂ is a random variable that has a normal distribution.
The expected (mean) value of the probability estimator is given by the probability itself, E[p̂] = p (i.e.,
it is an unbiased estimator). The variance of the probability estimator is given by V ar[p̂] = p(1−p)/N ,
where N is the number of samples in our Monte Carlo simulation.

To obtain a probability estimate within ±0.01 with 99% confidence, we require that

3

√
p(1 − p)

< 0.01,
N

where the 3 comes from the specification of the 99% confidence level for a normal distribution (to be
more precise, we could use 2.58, but rounding to 3 will be a conservative estimate).
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Now, we do not know p, but we can see that the variance of the estimator will be maximum in the
case that p = 0.5. If we consider this worst case, then we will obtain a conservative value of N that
we can use for all probability estimates. Using p = 0.5 and rearranging the expression above, we
find that N = 22, 500. If we use this value for all our simulations, we will be guaranteed that all
probability estimates satisfy the stated accuracy requirements. A more sophisticated approach would
be to monitor convergence on the fly, using our estimate p̂ in place of p to calculate the termination
criteria. In this latter case, we need to make sure that we first complete a minimum number of samples
(say N = 500) so the probability estimates are reasonable before they are used in the termination
calculation. We would also end up using a different number of samples for the Monte Carlo simulation
for each pitch type.

Table 2 gives sample results for the probability estimates for each combination pitch and hit type.

Table 2: Estimated probability of the batted ball results using a Monte Carlo simulation for each pitch type.
Pitch Type Ground Balls Line Drives Fly Balls Home Runs

High Fastball 0 0.002 0.82 0.18
Sinking Fastball 0.66 0.18 0.12 0.04

Curveball 0.25 0.23 0.51 0.01

3. Plot a histogram of the computed maximum range of the baseball for each pitch type. (You should
have one histogram per pitch type.) Also include a histogram of the inputs for the simulation. Do the
inputs match what you expect? Discuss how the histograms vary for the different pitches.

Solution: These plots are shown in Figures 2–7. The inputs are in a triangular distribution as expected
with the appropriate ranges. We see that the distributions of the ball’s range is quite different among
the three different pitch types. High fastball pitches clearly result in higher ranges on average, although
there is also large variability. Sinking fastballs lead mostly to the ball being hit a short distance, while
curveballs lead mostly to short and mid-distance hits. Some high fastball pitches result in the ball
travelling a negative distance (foul balls). This corresponds to situations where the ball leaves the bat
at a high angle (i.e., being hit up into the air) and the wind is in the negative x-direction.

Figure 2: Histogram of the inputs for the high fastball.
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Figure 3: Histogram and CDF of the distance traveled by the ball for the high fastball.
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Figure 4: Histogram of the inputs for the sinking fastball.
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Figure 5: Histogram and CDF of the distance traveled by the ball for the sinking fastball.
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Figure 6: Histogram of the inputs for the curveball.

6



0 100 200 300 400 500 600
0

500

1000

1500

2000

Max Distance (ft)

N
um

be
r o

f S
am

pl
es

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Max Distance (ft)

F(
x)

Figure 7: Histogram and CDF of the distance traveled by the ball for the curveball.
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4. If you wanted to have a high percentage of a ground ball to try and create a double-play, which
pitch would your recommend to your pitcher? If you were the batting coach, which ball would you
recommend to the batters in order to hit a home run?

Solution: If you want to have the highest percentage of a ground ball, the pitcher should throw a
sinking fastball according to Table 2. The batting coach should recommend trying to hit a high fastball
for the greatest probability of yielding a home run.

2.2 Estimation of the Mean Distance the Baseball Travels

The probability of the batted ball results is useful; however, one of the baseball managers would prefer to
have the results in the form of an expected (mean) value of the distance the ball traveled in the x-direction.
Using your initial results, determine the mean and variance of the x-distance traveled by the ball for each
pitch type. Determine the standard error of the mean estimate.

Solution: The estimated mean distance traveled by the ball for each pitch type is given in Table 3,
along with the corresponding estimator standard errors. The table also shows the estimated variance in the
distance traveled by the ball for each pitch type. Note that your standard error could be different, depending
on how you selected N .

Table 3: Estimated mean distance traveled by the ball, the corresponding estimator standard error, and the
estimated variance of the distance traveled by the ball .

Pitch Type Mean Distance (ft) Variance (ft2) Standard Error (ft)
High Fastball 264.5 19662 1.214

Sinking Fastball 117.0 14384 0.840
Curveball 145.1 10261 0.675
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