THE ENVIRONMENT OF SPACE

Image courtesy of NASA.

OUTLINE

- Overview of effects
- Solar Cycle
- Gravity
- Neutral Atmosphere
- Ionosphere
- GeoMagnetic Field
- Plasma
- Radiation

OVERVIEW OF THE EFFECTS OF THE SPACE ENVIRONMENT

- Outgassing in near vacuum
- Atmospheric drag
- Chemical reactions
- Plasma-induced charging
- Radiation damage of microcircuits, solar arrays, and sensors
- Single event upsets in digital devices
- Hyper-velocity impacts

Solar Cycle

- Solar Cycle affects all space environments.
- Solar intensity is highly variable
- Variability caused by distortions in magnetic field caused by differential rotation
- Indicators are sunspots and flares

LONG TERM SOLAR CYCLE INDICES

- Sunspot number R 10 (solar min) $\leq R \leq 150$ (solar max)
- Solar flux $F_{10.7}$ Radio emission line of Fe (2800 MHz) Related to variation in EUV Measures effect of sun on our atmosphere Measured in solar flux units (10⁻²² w/m²) 50 (solar min) $\leq F_{10.7} \leq 240$ (solar max)

SHORT TERM SOLAR CYCLE INDEX

- Geomagnetic Index A_p
 - Daily average of maximum variation in the earth's surface magnetic field at mid lattitude (units of

 $2 \times 10^{-9} \text{ T}$)

 $A_p = 0$ quiet $A_p = 15$ to 30 active $A_p > 50$ major solar storm

GRAVITY

force =
$$-G\frac{m_{1}m_{2}}{r^{2}}\hat{r}$$

G=6.672× 10⁻¹¹m³kg⁻¹

At surface of earth

$$f_g = -m \frac{Gm_e}{R_E^2}$$
 $g = \frac{Gm_e}{R_E^2} \approx 9.8 \frac{m}{\sec^2}$

MICROGRAVITY

- Satellites in orbit are in free fall accelerating radially toward earth at the rate of free fall.
- Deviations from zero-g Atmospheric drag $\ddot{x}=0.5\left|\frac{C_D A}{m}\right|\rho a^2\omega^2$
 - Gravity gradient

$$\ddot{x} = -xw^2 \qquad \ddot{x} = -yw^2 \qquad \ddot{z} = 2zw^2$$

– Spacecraft rotation $\ddot{x} = x \omega^2$ $\ddot{z} = z \omega^2$

(rotation about Y axis)

- Coriolis forces

$$\ddot{x}=2z\omega$$
 $\ddot{y}=o$ $\ddot{z}=-z\dot{x}\omega$

ATMOSPHERIC MODEL NEUTRAL ATMOSPHERE

- Turbo sphere (0 ~ 120Km) is well mixed (78% N₂, 21% O_2)
 - Troposphere (0 ~ 10Km) warmed by earth as heated by sun
 - Stratosphere (10 ~ 50 Km) heated from above by absorption of UV by 0_3
 - Mesosphere (50 ~ 90Km) heated by radiation from stratosphere, cooled by radiation into space
 - Thermosphere (90 ~ 600Km) very sensitive to solar cycle, heated by absorption of EUV.
- Neutral atmosphere varies with season and time of day

Layers of the Earth's Atmosphere

DENSITY ALTITUDE MODEL

Assume perfect gas and constant temperature

$$p = n k T$$
 $\frac{dp}{dh} = \frac{d(nkT)}{dh}$

n is number density (number/m³) dpA - n m g A d h = o k is Boltzmann's constant M is average molecular mass $H \sim 8.4$ km h ~ 120km H = kT/mg (scale height) dpA - n m g A d h = o $\frac{dp}{dh} - nMg = \frac{d(nkT)}{dh}$ $\frac{dp}{dh} = nMg = \frac{d(nkT)}{dh}$ $\frac{dp}{dh} = nMg = \frac{d(nkT)}{dh}$ $n = n_o exp (-h/H)$

Atmospheric Gases

- At higher altitudes O₂ breaks down into O by UV
- Primarily O from 80 90 km to 500 km
- Hydrogen and Helium beyond 500 km
- Kinetic energy of O atom at 7.8 km/s ~ 5eV (enough to break molecular bonds ~1 - 2eV)
- O is highly reactive and destructive to spacecraft
- Temperature at LEO increases with altitude
- Atmosphere expands when heated by high UV (solar max)
- LEO densities ~ 10^8 particles/cm³

ATMOSPHERIC MODEL

- Most common Mass Spectrometer and Incoherent Scatter model - 1986 (MSIS - 1986)
 - Based on measured data
 - Requires A_p , $F_{10.7}$, month as input
 - Gives average values of n, n_o, T, atomic mass as function of altitude
 - Instantaneous values can vary by factor of 10

http://nssdc.gsfc.nasa.gov/space/model/atmos/msis.html

AERODYNAMIC DRAG

Drag

$$\overline{D} = -\frac{1}{2}\rho \overline{v} \cdot \overline{v} (\frac{v}{|\overline{v}|})C_{D}A$$
$$\overline{D} = m \frac{d\overline{v}}{dt}$$
$$\Delta v = \frac{1}{2}\rho v^{2} \left[\frac{C_{D}A}{m}\right]\Delta t$$

Ballistic coefficient $\beta = \left\lfloor \frac{m}{C_D A} \right\rfloor$ ρ =density of the atmosphere=m_on_o

 $=16x1.67x10^{-27}x10^{13}=2.67x10^{-13}$ kg/m³

V=7.8km/s

C_D - Drag coefficient

A - Cross sectional area

DRAG COEFFICIENTS

Derived from Newtonian Aerodynamics. Depends

on what air molecule does at impact

- Reflected $C_D = 4$ - Absorbed $C_D = 2$ Since F = d(mv)/dt0 → A D = -F = -d(mv)/dt $C_D = \frac{D}{\frac{1}{2}\rho V^2 A} = -\frac{m[V_f - V_i]}{\frac{1}{2}\rho V_i^2 A dt}$ $m = \frac{2}{\rho} Av_i dt$ $C_{D} = -2 (v_{f} - v_{i})/v_{i}$ = 2 if $v_f = 0$ in rarefied atmosphere = 4 if $v_f = -v_i$

TYPICAL DRAG PARAMETERS

	<u>β (kg/m₂)</u>	<u> </u>	
LANDSAT	25 - 123	3.4 - 4	
ERS - 1	12 - 135	4	
Hubble	29 - 192	3.3 - 4	90,000Kg
Echo 1	0.515	2	

Typically $C_D \sim 2.2$ - 4 for spacecraft. (see SMAD Table 8.3) ΔV over one year ($\beta = 100 \text{ kg/m}^2$)

<u>h (km)</u>	ΔV /year (m/s)		
100	107		
200	2 - 5 × 10 ³ solar (min - max)		
300	40 - 600		
400	3 - 200		

SATELLITE LIFETIMES

Large variation depending on initial altitude and solar min/max condition (see SMAD Fig. 8 - 4)

At LEO, design must compensate for effects of drag.

MAGNETIC FIELD EFFECTS

- Deflects charged particles/solar wind.
 - South Atlantic Anomaly
- Creates the structure of the ionosphere/plasmasphere
 - Magnetosphere
 - Van Allen radiation belts
- Direct effects on Spacecraft systems
 - Avionics induced potential effects
 - Power induced potential effects
 - GN&C magnetic torquer performance, sizing
 - Structures induced currents
 - TT&C location of SAA

GEOMAGNETIC FIELD

- Earth's Magnetic field comes from three sources
 - internal field (99%)
 - currents inside the Earth
 - residual magnetism of elements contained in crust
 - External field 1%
 - Currents in the magnetosphere
- B_i internal field varies slowly on the order of 100 years
 (0.05%/year.)
- Poles of magnetic field lie in Siberia and South Australia.

GEOMAGNETIC FIELD

Units (Total Intensity) : nanoTeslas Contour Interval : 2000 nanoTeslas Map Projection : Mollweide

.

Units (Annual Change) : nanoTeslas/yr Contour Interval : 10 nanoTeslas/yr Map Projection : Moltweide

MAGNETOSPHERE

Magnetosphere (continued)

- Earth's field extends 10 Earth Radii (R_ε) toward the sun
 terminates at magneto pause
- Earth's field slows and deflects solar wind
 - Compressed, heated, turbulent
 - Bow shock at about 14 R_{ϵ}
- Polar field lines are swept back in night-side tail
 - Does not close
 - Neutral sheet
- Surface of discontinuity in magnetic field implies current flow in the surface
 - Sunward magnetopause eastward current flow across subsolar point.
 - Neutral sheet current flow is westward across the tail
 ²²

EXTERNAL MAGNETIC FIELD

- B_e generated by ring currents and solar wind. Large variation with time
 - Milliseconds to 11-year cycle scales.
- Variations caused by
 - Magnetosphere fluctuations (geomagnetic storms)
 - Solar activity
- Geomagnetic storms dump large numbers of charged particles from magnetosphere into atmosphere
 - Ionizes and heats the atmosphere
 - Altitudes from 300 km to over 1000 km
 - Persist 8-12 hours after storm subsides

GEOMAGNETIC COORDINATE SYSTEMS

Geomagnetic

B - **I**

GEOMAGNETIC FIELD

Magnitude Formula/Models Tilted dipole (11° from geographic north) $B_i(r, \theta_m, \phi_m) = -\frac{M}{r^3} (3\cos^2(\theta_m) + 1)^{1/2}$ at LEO

where

$M = 0.311 \times 10^{-4}$	$T-R_e^3$
$= 7.9 \times 10^{15}$	T - m ³
$B_r = -\frac{M}{r^3} 2\cos\theta_m$	
$B_{\theta m} = -\frac{M}{r^3} \sin \theta_m$	
$B_{\phi m} = 0^{1}$	

International Geomagnetic Reference Field 1987 (IGRF1987)

FIELD VALUES

- Minimum (near equator) = 0.25×10^{-4} T
- Maximum (near polar caps) = 0.50×10^{-4} T
- Two peaks near north pole
- Two minimum near equator
- Largest minima is known as South Atlantic Anomaly
 - Much higher radiation exposure at LEO
- Geomagnetic storms impose variations of $0.01 \times 10^{-4} \text{ T}$

TOTAL FIELD INTENSITY

Units (Total Intensity) : nanoTeslas Contour Intenval : 2000 nanoTeslas Map Projection : Mollweide Units (Annual Change) : nanoTeslas/yr Contour Interval : 10 nanoTeslas/yr Map Projection : Mollweide

SOUTH ATLANTIC ANOMALY

Reduced protection in SAA allows greater effect of high energy particles - electronic upsets, instrument interference.

PLASMA EFFECTS OVERVIEW

- Plasma is a gas made up of ions and free electrons in roughly equal numbers.
- Causes
 - Elecromagnetic Interference
 - Spacecraft charging & arcing
 - Material effects
- Effects
 - Avionics Upsets from EMI
 - Power floating potential, contaminated solar arrays, current losses
 - GN & C torques from induced potential
 - Materials sputtering, contamination effects on surface materials

PLASMA EFFECTS (cont.)

• Effects continued

Optics systems - contamination changes properties of surface materials.

Propulsion - Thruster firings change/shift the floating potential by contacting the plasma.

PLASMA GENERALIZATION

- Plasma is caused by UV, EUV, X-ray photoelectric effect on atmospheric molecules.
 - Breaks diatomic molecule bonds.
 - Ejects electrons from outer shells.
- As UV, EUV, X-ray penetrate the atmosphere, ion density increases with atmospheric density until most UV, EUV have been absorbed (>60 Km altitude).
 Varies dramatically with altitude, latitude, magnetic field strength, time of day and solar activity.
- Electrically charged region of atmosphere is called the ionosphere.
- Gas in ionosphere is called ionospheric plasma.

LEO PLASMA ENVIRONMENT

- Balance between increasing density and increasing absorption leads to formation of ionization layers.
 - F layer 150 km 1000 km
 - E layer 100 km 150 km
 - D layer 60 km 100 km
- Transition region from ion-free atmosphere to fully ionized region called the plasmasphere.
- Plasmasphere ion densities peak at 10¹⁰/m³ to 10¹¹/m³ at 1000 km
 - Drops to $10^{9}/m^{3}$ at its boundary
- Outer boundary called plasmapause
 - Density drops to $10^5/m^3$ to $10^6/m^3$
 - Height is $\sim 4 \text{ R}\epsilon$ between 0000 and 1800 hours
 - Expands to \sim 7 R ϵ during the local dusk (dusk bulge)

ELECTRON DENSITY 1000 Solar Max Altitude (km) Solar Min Nightime Electrons Daytime Electrons 100 -1 1 1 1 1 1 1 10³ 10⁵ 10¹ 10^{7} Density (cm⁻³)

PLASMAPAUSE HEIGHT VS LOCAL TIME

K_p is Magnetic Activity Index

ION CONCENTRATIONS

- Similar to neutral atmosphere

- D layer NO^+/O^+
- E layer O^+
- F layer $O^{+/}H^+$

-Daytime F layer density peaks at 10¹²/m³ (300 km)

- -Nighttime F-layer density drops to $10^{11}/m^3$ (500 km)
- Composition transitions from O⁺ to H⁺

ION CONCENTRATIONS (cont.)

PLASMA TEMPERATURES

Increases from ~100K at 50 - 60 km to 2000 - 3000K above 500 km Electron temperature $T_e = 4000K - 6000K$ Ion temperature $T_i = 2000K - 3000K$

Density much higher at solar maximum due to higher UV/EUV fluxes.

LEO PLASMA ENVIRONMENT MODELS

International Reference Ionosphere (IRI)

-Outputs - electron density n_e

- ion composition n_i

- Temperature T_e, T_i

-Inputs (latitude, longitude, altitude, solar activity (R), time).

Available at :

http://nssdc.gsfc.nasa.gov/space/model/ionos/iri.html

"Ionospheric models" Carlson, Schunk, Heelis, Basu

RADIO FREQUENCY TRANSMISSIVITY

- Plasma transitions from a perfect conductor to perfect dielectric as a function of frequency.
- Plasma frequency $\omega_{pe} = \left(\frac{n_e e^2}{\varepsilon_m}\right)^{\frac{1}{2}}$
- Dielectric constant

$$\varepsilon = \varepsilon_o \left(1 - \left(\frac{\omega_{pe}}{\omega} \right)^2 \right)^2$$

- For $\omega >> \omega_{pe}$ the plasma appears like free space
- For $\omega \sim \omega_{pe}$ electromagnetic waves cannot propagate
 - Transmissions from below are reflected
 - Transmissions from within are absorbed
- For $\omega > \omega_{pe}$ random variations in n_e can cause random delays and phase shifts

SPACECRAFT CHARGING

- At LEO spacecraft become negatively charged
 - Plasma is dense but low energy
 - Orbital velocity is higher than ion thermal velocity
 - Lower than electron thermal velocity
 - Electrons impact all surfaces
 - Ions impact ram surfaces only
- Geo spacecraft charge during magnetospheric substorms between longitudes corresponding to midnight and dawn
- Biased surfaces (solar arrays) influence the floating potential

CHARGING EFFECTS

- Instrument reading bias
- Arcing-induced EMI, electronics upsets
- Increased current collection
- Re-attraction of contaminants
- Ion sputtering, accelerated erosion of materials
 Spacecraft must be designed to keep differential charging below the breakdown voltages or must tolerate the effects of discharges.

RADIATION

- Most radiation effects occur by energy depostion
 - Function of both energy, type of particle and material into which energy is deposited.
- Definitions
 - 1 rad (Si) = 100 ergs/gm into Silicon
 - 1 Cray (Si) = 1 J/kg into Si
 - $1 \text{ rad } (\text{Si}) = 10^{-4} \text{ Cray}$

RADIATION DAMAGE THRESHOLDS In many materials the total dose of radiation is the most critical issue. In other circumstances the time over which the dose is received is equally important.

<u>Material</u>	Damage Threshold (rad)
Biological Matter	$10^1 - 10^2$
Electrical Matter	$10^2 - 10^4$
Lubricants, hydraulic fluid	10 ⁵ - 10 ⁷
Ceramics, glasses	$10^{6} - 10^{8}$
Polymeric materials	10 ⁷ - 10 ⁹
Structural metals	10 ⁹ - 10 ¹¹ 43

SPACECRAFT EFFECTS

- High energy particles travel through spacecraft material and deposit kinetic energy
 - Displaces atoms.
 - Leaves a stream of charged atoms in their wake.
- Reduces power output of solar arrays
- Causes sensitive electronics to fail
- Increases sensor background noise
- Radiation exposure to crews

HIGH ENERGY RADIATION

• Definition

For ElectronsE > 100 keVFor protons and heavy ionsE > 1 MeV

- Sources
 - Van Allen Belt → (electrons and protons) (trapped radiation)
 - Galactic cosmic rays interplanetary protons and ionized heavy nuclei
 - Protons associated with solar proton events

VAN ALLEN BELTS

- Torodial belts around the earth made up of electrons and ions (primarily protons) with energies > 30 keV.
- Two big zones
 - Inner belt ~ 1000 Km \rightarrow 6000 km altitude
 - Protons E > 10's of MeV
 - Electrons $E \sim 1$ 10 MeV
 - Outer belt 10,000 60,000 km
 - Electrons $E \sim 0.04 4.5 \text{ MeV}$

VAN ALLEN BELTS (cont.)

- Sources
 - acceleration of lower-energy particles by magnetic storm activity
 - trapping of decay products produced by cosmic ray collisions with the atmosphere
 - solar flares

CONCENTRATION MECHANISM

- Earth's magnetic field concentrates on large fluxes of electrons, protons and some heavy ions.
- Radiation belt particles spiral back and forth along magnetic field lines.
 - Ionizing radiation belts reach lowest altitude of the eastern coast of the eastern coast of South America (SAA).

(Image removed due to copyright considerations.)

ELECTRON AND PROTON FLUXES

5 YEAR DOSE

TRAPPED RADIATION BELTS

VAN ALLEN BELT RADIATION STABILITY

- Inner belt
 - Fairly stable with changes in solar cycle
 - May change by a factor of three as a result of geomagnetic storms loading in high energy electrons.
- Outer belt
 - Electron concentrations may change by a factor of 1000 during geomagnetic storms.
- Standard Models (AP8 protons) and (AE8 electrons)
 - Require B, L and whether solar min/solar max
 - Provide omni-directional fluxes of protons 50 keV < E < 500 MeV and electrons 50 keV < 7 Mev

SOLAR CELL DEGRADATION

GALACTIC COSMIC RAYS

- Primarily interplanetary protons and ionized heavy nuclei
 - 1 MeV < E < 1 GeV per nucleon
 Cause Single Event Upsets (SEU)
- Sources are outside the solar system
 - other solar flares
 - nova and supernova explosions
 - quasars

PARTICLE RANGE

MAGNETIC SHIELDING

SOLAR PROTON EFFECTS

- Solar flares often eject high energy hydrogen and other nuclei
 - $-1 \text{ MeV} \le E \le 10 \text{ GeV/nucleon}$
 - At low energies the number can be much greater than galactic comic radiation level
- Solar events are sporadic but correlate somewhat with the solar cycle
- These events make a Mass Mission hazardous

PARTICLE ENERGY

SOLAR PROTON DOSE

Average Radiation Dose From Large Solar Proton Event

FEYNMAN MODEL

Based on data from 1963 to 1991

ELECTROMAGNETIC RADIATION

- Radio
 - 1 10 MHz galactic electromagnetic radiation
 - terminal noise
 - not significant for single event environment
- Visible/IR
 - solar flux
 - heating
- UV/EUV/X-ray

- EUV @ 100 to 1000 Å is significant for surface chemistry

References

- Wertz, James R. and Wiley JH. Larson, <u>Space Mission</u> <u>Analysis and Design</u>, Third edition, Microcosm Press, El Segundo CA 1999
- Pisacane, Vincenti and Robert C. Moore, <u>Fundamentals of</u> <u>Space Systems</u>, Oxford University Press, NY, 1994.
- http://nssdc.gsfc.nasa.gov/space/model/models_home.html
- http://nssdc.gsfc.nasa.gov/space/model/magnetos/igrf.html