

Optimization of Separated Spacecraft Interferometer Trajectories in the Absence of A Gravity-Well

Edmund M. Kong Prof David W. Miller MIT Space Systems Laboratory 20th March 1998

Massachusetts Institute of Technology

Objective & Approach

Objective : Determine the optimal synthetic imaging trajectory for a Separated Spacecraft Interferometer

Image Quality

Model : 2 Collector and 1 Combiner Interferometer (DS 3) Physics : Average Image Intensity

Space Systems Laboratory

Point Spread Function Images

Trajectory Optimization - Mass Metric $m_{fuel} = \frac{\dot{m}_{fuel}}{2} \left(T_{image} \pm \sqrt{T_{image}^2 - 4 \frac{N}{a} \sum_{i=1}^{N} s_i} \right)$ Minimize Fuel Expended Per Image Assumptions : "Stop and Stare" imaging mode 0.8 : Trapezoidal velocity profile 0.6 (kg) 9.0 Long (kg) : Constant acceleration Parameters : Spacecraft masses Collector = 150 kgCombiner = 250 kg 0.2 : Cold Gas Propulsion $I_{sp} = 62.5 \text{ s}, \text{ F} = 9 \text{ mN}$ 0' 0 100 200 300 400 : T_{image} = 264 Hours Constraint No. of Imaging Points : Traveling Salesman Approach Result: Fuel mass increases with Algorithm no. of imaging points (N)

Trajectory Optimization - Time Metric

Minimize

$$T = \frac{2}{\sqrt{a}} \sum_{n=1}^{N} \sqrt{s_i}$$

Assumptions : "Stop and Stare" imaging mode

- : Triangular velocity profile
- : Small Integration Time
- Parameters : Spacecraft masses Collector = 150 kg Combiner = 250 kg : Pulse Plasma Thrusters
 - I_{sp} = 1000 s, F = 1.4 mN
- Constraint : S/C Power 80 W
- Approach : T
- Traveling Salesman Algorithm

Result : Imaging time increases with no. of imaging points

Other Alternatives

PSF Comparison

Fuel and Time Metrics vs MSE

Result : Better MSE with lower fuel consumption or shorter imaging time

Other Considerations

Space Systems Laboratory

Massachusetts Institute of Technology

• Determined the optimal imaging locations

- Determined the optimal trajectories
 - Mass metric
 - Time metric

Compared with other alternatives

- Future considerations
 - MSE versus Mass trade-off
 - MSE versus Time trade-off
 - Extension to N spacecraft
 - "Image on the Fly" mode
 - Other Metrics

Simulated Annealing

- Statistical Approach
- Randomly select a configuration and calculate cost, C_r
 - If $C_r < C_{r-1} \rightarrow accept r^{th}$ configuration
 - If $C_r > C_{r-1} \implies$ accept r only if $exp(-C_r/T) > Random(0,1)$
 - when C_r is accepted, decrease T (system temperature)
 - Continue until system is frozen (no new solution accepted in N trials)
- Does not guarantee global minimum
- Quick and easy implementation
- Reasonable solution achieved in short computation time
- Reference:
 - S. Kirkpatrick, C. D., Gelatt, Jr., M. P. Vecchi, "Optimization by Simulated Annealing", Science, Volume 220, Number 4598, 13th May 1983.