From language to vision and back again

Center for Brains,
Minds \& Machines

Andrei Barbu

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Torralba et al 2003

hammering
 hammer

Perception is unreliable.

Top-down knowledge affects our perception.
One integrated representation for many tasks.

Recognition

Retrieval

Generation

Question answering
Disambiguation
Acquiring language

Images, not videos
Translation

Planning
Theory of mind

Humans perform language-vision tasks all the time

Give me the cup.
Which chair should I sit in?
This is an apple.
To win this game you have to make a straight line out of your pieces.

Retrieval

Generation

Question answering

Disambiguation

Acquiring language

Images, not videos
Translation
Planning
Theory of mind

The person rode the skateboard leftward.
object detector, tracker, event recognizer

Object detection

Figure removed due to copyright restrictions. Please see the video.
Source: Barbu, Andrei, Aaron Michaux, Siddharth Narayanaswamy, and Jeffrey Mark Siskind. "Simultaneous object detection, tracking, and event recognition." Advances in Cognitive Systems: 203-220 (2012).

Felzenszwalb et al 2008

Object detection

Figure removed due to copyright restrictions. Please see the video.
Source: Barbu, Andrei, Aaron Michaux, Siddharth Narayanaswamy, and Jeffrey Mark Siskind. "Simultaneous object detection, tracking, and event recognition." Advances in Cognitive Systems: 203-220 (2012).

Object detection

Figure removed due to copyright restrictions. Please see the video.
Source: Barbu, Andrei, Aaron Michaux, Siddharth Narayanaswamy, and Jeffrey Mark Siskind. "Simultaneous object detection, tracking, and event recognition." Advances in Cognitive Systems: 203-220 (2012).

Felzenszwalb et al 2008

Object detectors work poorly

Figure removed due to copyright restrictions. Please see the video.
Source: Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115, no. 3 (2015): 211-252.

Russakovsky et al 2015

Fixing bad detectors with higher-level knowledge

detection / object / frame temporally coherent track object detector confidence (f) motion coherence (g) optimal path through the lattice of detections dynamic programming Bellman (1957), Viterbi (1967)

$$
\max _{j^{1}, \ldots, j^{T}} \sum_{t=1}^{T} f\left(b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j^{t-1}}^{t-1}, b_{j^{t}}^{t}\right)
$$

Fixing bad detectors with higher-level knowledge

Courtesy of Andrei Barbu, Alexander Bridge, Dan Coroian, Sven Dickinson, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi, Lara Schmidt, Jiangnan Shangguan, Jeffrey Mark Siskind, Jarrell Waggoner, Song Want, Jinlian Wei, Yifan Yin \& Zhiqi Zhang. Used with permission.
Source: Barbu, Andrei, Alexander Bridge, Dan Coroian, Sven Dickinson, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi et al. "Large-scale automatic labeling of video events with verbs based on event-participant interaction." arXiv preprint arXiv:1204.3616 (2012).
detection / object / frame temporally coherent track object detector confidence (f)
motion coherence (g) optimal path through the lattice of detections
dynamic programming
Bellman (1957), Viterbi (1967)

$$
\max _{j^{1}, \ldots, j^{T}} \sum_{t=1}^{T} f\left(b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j^{t-1}}^{t-1}, b_{j^{t}}^{t}\right)
$$

Feature vector - single participant

Feature vector - dual participant

person riding skateboard
person approaching person
skateboard approaching person

Event recognition

Event recognition

$$
\max _{k^{1}, \ldots, k^{T}} \sum_{t=1}^{T} h\left(k^{t}, b_{\hat{\jmath}^{t}}^{t}\right)+\sum_{t=2}^{T} a\left(k^{t-1}, k^{t}\right)
$$

Barbu et al 2012

Tracking in the context of event recognition

$$
\max _{j^{1}, \ldots, j^{T}} \sum_{t=1}^{T} f\left(b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j^{t-1}}^{t-1}, b_{j^{t}}^{t}\right)+\max _{k^{1}, \ldots, k^{T}} \sum_{t=1}^{T} h\left(k^{t}, b_{\hat{j}^{t}}^{t}\right)+\sum_{t=2}^{T} a\left(k^{t-1}, k^{t}\right)
$$

Tracking in the context of event recognition

$$
\max _{j^{1}, \ldots, j^{T} k^{1}, \ldots, k^{T}} \sum_{t=1}^{T} f\left(b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j^{t-1}}^{t-1}, b_{j^{\prime}}^{t}\right)+\sum_{t=1}^{T} h\left(k^{t}, b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} a\left(k^{t-1}, k^{t}\right)
$$

Tracking in the context of event recognition

$\max _{j^{1}, \ldots, j^{T}} \max _{k^{1}, \ldots, k^{T}} \sum_{t=1}^{T} f\left(b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j^{t-1}}^{t-1}, b_{j^{t}}^{t}\right)+\sum_{t=1}^{T} h\left(k^{t}, b_{j^{t}}^{t}\right)+\sum_{t=2}^{T} a\left(k^{t-1}, k^{t}\right)$

Tracking in the context of event recognition in action

tracking

tracking and event recognition

Courtesy of Andrei Barbu, Alexander Bridge, Dan Coroian, Sven Dickinson, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi, Lara Schmidt, Jiangnan Shangguan, Jeffrey Mark Siskind, Jarrell Waggoner, Song Want, Jinlian Wei, Yifan Yin \& Zhiqi Zhang. Used with permission. Source: Barbu, Andrei, Alexander Bridge, Dan Coroian, Sven Dickinson, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi et al. "Large-scale automatic labeling of video events with verbs based on event-participant interaction." arXiv preprint arXiv:1204.3616 (2012).

Tracking in the context of event recognition in action

tracking
tracking and event recognition

Building sentences out of trackers and words

Viterbi tracker

$\max _{j_{1}^{1}, \ldots, j_{1}^{T}} \sum_{t=1}^{T} f\left(b_{j_{l}^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j_{l}^{t-1}}^{t-1}, b_{j_{l}^{t}}^{t}\right)$

Siddharth et al 2014

Building sentences out of trackers and words

Event tracker for intransitive verbs

Siddharth et al 2014

Building sentences out of trackers and words

Event tracker
track 1

word 1
track L

X
$\max _{j_{1}^{1}, \ldots, j_{1}^{T}} \max _{k_{1}^{1}, \ldots, k_{1}^{T}} \sum_{l=1}^{L} \sum_{t=1}^{T} f\left(b_{j_{l}^{t}}^{t}\right)+\sum_{t=2}^{T} g\left(b_{j_{l}^{t-1}}^{t-1}, b_{j_{l}^{t}}^{t}\right)+\sum_{t=1}^{T} h\left(k^{t}, b_{\hat{j}_{\theta^{t}}^{t}}^{t}, b_{\hat{j}_{\theta^{2}}^{t}}^{t}\right)+\sum_{t=2}^{T} a\left(k^{t-1}, k^{t}\right)$
$j_{L}^{1}, \ldots, j_{L}^{T}$
Siddharth et al 2014

Building sentences out of trackers and words

Sentence tracker

$j_{L}^{1}, \ldots, j_{L}^{T} k_{W}^{1}, \ldots, k_{W}^{T}$
Siddharth et al 2014

Sentences

The tall person quickly rode the horse leftward away from the other horse.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Understanding sentences as a whole

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video."
J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

We can differentiate events based on the verb:

> The person picked up an object.
> The person put down an object.

Siddharth et al 2014

Understanding sentences as a whole

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video."
J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

We can differentiate events based on the subject noun:

> The backpack approached the bin. The chair approached the bin.

Siddharth et al 2014

Understanding sentences as a whole

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video."
J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

We can differentiate events based on an adjective in the subject NP:

> The red object approached the chair. The blue object approached the chair.

Understanding sentences as a whole

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video."
J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

We can differentiate events based on a preposition in the object NP:
The person picked up an object to the right of the bin.
The person picked up an object to the left of the bin.
Siddharth et al 2014

Recognition
Retrieval
Generation

Question answering
Disambiguation
Acquiring language

Images, not videos
Translation
Planning
Theory of mind

Sentential retrieval

© Warner Bros. Family Entertainment. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw. mit.edu/help/faq-fair-use/.

© Metro-Goldwyn-Mayer All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw. mit.edu/help/fag-fair-use/.

© United Artists. All rights reserved. This content is excluded from our Creative Commons license. or more information, see https://ocw.mit .edu/help/faq-fair-use/

© Columbia Pictures. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw. mit.edu/help/faq-fair-use/.

© Columbia Pictures. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit. edu/help/faq-fair-use/.

© Universal Pictures. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/ help/faq-fair-use/.
© United Artists. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/ help/faq-fair-use/.

HIDALGO
© Buena Vista Pictures. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu /help/fag-fair-use/.

© Warner Bros. Family Entertainment. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help /faa-fair-use/.

Recognition
Retrieval

Generation

Question answering

Disambiguation

Acquiring language

Images, not videos
Translation

Planning
Theory of mind

Generating sentences

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP} \\
& \mathrm{NP} \rightarrow \mathrm{D}[\mathrm{~A}] \mathrm{N}[\mathrm{PP}] \\
& \mathrm{D} \rightarrow \text { an } \mid \text { the } \\
& \mathrm{A} \rightarrow \text { blue } \mid \text { red } \\
& \mathrm{N} \rightarrow \text { person } \mid \text { backpack } \mid \text { chair } \mid \text { bin } \mid \text { object } \\
& \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} \\
& \mathrm{P} \rightarrow \text { to the left of } \mid \text { to the right of } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \text { NP }[\mathrm{Adv}][\mathrm{PP} \\
&\mathrm{V}] \\
& \mathrm{V} \rightarrow \text { approached } \mid \text { carried } \mid \text { picked up } \mid \text { put down } \\
& \mathrm{Adv} \rightarrow \text { quickly } \mid \text { slowly } \\
& \mathrm{PP}_{\mathrm{M}} \rightarrow \mathrm{P}_{\mathrm{M}} \mathrm{NP} \\
& \mathrm{P}_{\mathrm{M}} \rightarrow \text { towards } \mid \text { away from }
\end{aligned}
$$

$147,123,874,800$ sentences without recursion
"the person carried the backpack"

Generated sentences

The person to the right of the bin picked up the backpack.

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video."
J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

Recognition
Retrieval
Generation
Question answering
Disambiguation

Acquiring language

Images, not videos
Translation
Planning
Theory of mind

Recognition
Retrieval
Generation
Question answering

S(sentence, video)

```
argmax S(s,v)
    v\inV
argmax }S(s,v
    s\inL
\operatorname{argmax}S(Q(s, sq),v)
    s\inL
```

Disambiguation

Acquiring language

Images, not videos
Translation
Planning
Theory of mind

Question answering

What did the person put on top of the red car? The person put on top of the red car. The person put the pear on top of the red car.

Question answering

Who put an object on top of the red car?

Generation for question answering

Who put an object on top of the red car?
put an object on top of the red car.
put an object on top of the red car.

Generation for question answering

Who put an object on top of the red car?
put an object on top of the red car.
---------------put an object on top of the red car.

Discriminative generation for question answering

Who put an object on top of the red car?
put an object on top of the red car.

put an object on top of the red car.

Question answering

Who put an object on top of the red car? put an object on top of the red car.
The person on the left of the car put an object on top of the red car.

Recognition
Retrieval
Generation
Question answering
Disambiguation
Acquiring language

Images, not videos
Translation

Planning
Theory of mind

Disambiguation

Danny approached the chair with a bag.

Berzak et al 2015

Disambiguation

Danny approached the chair with a bag.

Berzak et al 2015

Disambiguation

PP Attachment

Danny looked at Andrei with a telescope.

Courtesy of Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz \& Shimon Ullman. License CC BY. Source: Berzak, Yevgeni, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman. "Do you see what i mean? visual resolution of linguistic ambiguities." arXiv preprint arXiv:1603.08079 (2016).

Disambiguation

PP Attachment
Andrei approached the person holding a green chair.
VP Attachment

Disambiguation

PP Attachment
VP Attachment
Conjunction

Danny and Andrei picked up the yellow bag and chair.

Courtesy of Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz \& Shimon Ullman. License CC BY. Source: Berzak, Yevgeni, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman. "Do you see what i mean? visual resolution of linguistic ambiguities." arXiv preprint arXiv:1603.08079 (2016).

Berzak et al 2015

Disambiguation

PP Attachment

Someone put down the bags.
VP Attachment
Conjunction
Logical Form

Berzak et al 2015

Disambiguation

PP Attachment
VP Attachment
Conjunction
Logical Form
Anaphora

Danny picked up the bag and the chair. It is yellow.

Courtesy of Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz \& Shimon Ullman. License CC BY. Source: Berzak, Yevgeni, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman. "Do you see what i mean? visual resolution of linguistic ambiguities." arXiv preprint arXiv:1603.08079 (2016).

Disambiguation

PP Attachment

VP Attachment
Conjunction
Logical Form
Anaphora
Ellipsis
Danny left Andrei. Also Yevgeni.

Courtesy of Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz \& Shimon Ullman. License CC BY. Source: Berzak, Yevgeni, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman. "Do you see what i mean? visual resolution of linguistic ambiguities." arXiv preprint arXiv:1603.08079 (2016).

Not just parse trees

Danny and Andrei moved a chair.

> Danny and Andrei move the same chair. chair (x) move(Danny, $x)$, move(Andrei, $x)$

Danny and Andrei move different chairs. chair (x), chair (y) move(Danny, x), move(Andrei, y), $x \neq y$

Not just parse trees

Danny and Andrei moved a chair.

Danny and Andrei move the same chair. chair (x), person (y), person $(z), y \neq z$ move (y, x), move (z, x)

> Danny and Andrei move different chairs. chair (x), chair (y), person (z), person $(w), z \neq w$ $\operatorname{move}(z, x)$, move $(\mathrm{w}, y), x \neq y$

Recognition
Retrieval
Generation
Question answering
Disambiguation

Acquiring language

S(sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{s \in L}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{\sigma_{I}}{\operatorname{argmax}} S\left(\mathrm{Q}\left(s, s_{q}\right), v\right)
$$

$$
s \in L
$$

```
argmax S(i,v)
i\inparser(s)
p}\underset{\operatorname{argmax}}{\prod}\S(s(p),v
```

Images, not videos
Translation

Planning
Theory of mind

Language learning

Split into two tasks:
Learning word meaning
Learning syntax

Language learning: word meaning

The chair approached the backpack.

The person picked up the backpack.
© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video." J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

Language learning: word meaning

© Journal of Artificial Intelligence Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yu, Haonan, N. Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. "A Compositional Framework for Grounding Language Inference, Generation, and Acquisition in Video." J. Artif. Intell. Res.(JAIR) 52 (2015): 601-713.

Language learning

Split into two tasks:
Learning word meaning Learning syntax

Language learning: syntax; in progress

Danny approached the chair with a bag.

Language learning: syntax; in progress

Danny approached the chair with a bag.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Pilley, John W., and Alliston K. Reid. "Border collie comprehends object names as verbal referents." Behavioural processes 86, no. 2 (2011): 184-195.

Pilley and Reid 2011

Recognition
Retrieval
Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
$S($ sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$\operatorname{argmax} S(s, v)$
$s \in L$
$\operatorname{argmax} S\left(\mathrm{Q}\left(s, s_{q}\right), v\right)$
$s \in L$
$\operatorname{argmax} S(i, v)$
$i \in \operatorname{parser}(s)$
$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
$S($ sentence, video)

Translation

Planning
Theory of mind

Recognition
Retrieval
Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$\operatorname{argmax} S(s, v)$
$s \in L$
$\operatorname{argmax} S\left(\mathrm{Q}\left(s, s_{q}\right), v\right)$
$s \in L$
$\operatorname{argmax} S(i, v)$
$i \in \operatorname{parser}(\mathrm{~s})$
$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
$S($ sentence, Flow(image))

Translation

Planning
Theory of mind

Single-frame optical flow

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Single-frame optical flow

Flow

Predicted

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Recognition
Retrieval

Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
Translation

S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{s \in L}{\operatorname{argmax}} S(s, v)
$$

$$
\operatorname{argmax} S\left(\mathbf{Q}\left(s, s_{q}\right), v\right)
$$

$$
s \in L
$$

$\operatorname{argmax} S(i, v)$

$i \in$ parser(s)

$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
S(sentence, Flow(image))
$\operatorname{argmin} f\left(s, s^{\prime}\right)$
$s^{\prime} \in L_{b}$

Planning
Theory of mind

Recognition
Retrieval

Generation

Question answering
Disambiguation

Acquiring language

Images, not videos

Translation

S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{s \in L}{\operatorname{argmax}} S(s, v)
$$

$$
\operatorname{argmax} S\left(\mathbf{Q}\left(s, s_{q}\right), v\right)
$$

$$
s \in L
$$

$\operatorname{argmax} S(i, v)$

$i \in$ parser(s)

$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
S(sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$

Planning
Theory of mind

Statistical machine translation

> Sam was happy parallel corpus
> Sam a fost fericita
> Сэм была счастлива

In Thai you specify siblings by age not gender.
In English you specify relative time but you don't need to in Chinese.
Guugu Yimithirr language only uses absolute directions.
Many languages don't distinguish blue/green.
Swahili specifies color as "the color of X".
In Turkish you have to report if something is hearsay.

Translation by imagination

sentence
sample
videos
generation
translation

Recognition
Retrieval
Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
Translation
Planning
Theory of mind

S(sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{s \in L}{\operatorname{argmax}} S(s, v)
$$

```
\(\operatorname{argmax} S\left(\mathrm{Q}\left(s, s_{q}\right), v\right)\)
    \(s \in L\)
```

$\underset{i \in \operatorname{parser}(s)}{\operatorname{argmax}} S(i, v)$
$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
S (sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$
$\underset{s \in L}{\operatorname{argmax}} \int_{v} S\left(s, v_{0}: v: v_{n}\right)$

Recognition
Retrieval
Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
Translation

Planning
Theory of mind
$S($ sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$\operatorname{argmax} S(s, v)$
$s \in L$
$\operatorname{argmax} S\left(\mathrm{Q}\left(s, s_{q}\right), v\right)$
$s \in L$
$\operatorname{argmax} S(i, v)$
$i \in \operatorname{parser}(\mathrm{~s})$
$\underset{p}{\operatorname{argmax}} \prod_{s, n} S(s(p), v)$
$S($ sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$
$\underset{s \in L}{\operatorname{argmax}} \int_{v} S\left(s, v_{0}: v: v_{n}\right)$
$S(s, v)$

Recognition
Retrieval

Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
Translation

Planning

Theory of mind
S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$\operatorname{argmax} S(s, v)$
$s \in L$
$\operatorname{argmax} S\left(\mathbf{Q}\left(s, s_{q}\right), v\right)$
$s \in L$
$\operatorname{argmax} S(i, v)$
$i \in$ parser(s)
$\underset{p}{\operatorname{argmax}} \prod S(s(p), v)$
S(sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$
$\underset{s \in L}{\operatorname{argmax}} \int_{v} S\left(s, v_{0}: v: v_{n}\right)$
$S(s$, tracks $) S($ tracks,$v)$

Recognition
Retrieval

Generation

Question answering
Disambiguation

Acquiring language

Images, not videos
Translation

Planning

Theory of mind
S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$$
\underset{s \in L}{\operatorname{argmax}} S(s, v)
$$

$$
\operatorname{argmax} S\left(\mathbf{Q}\left(s, s_{q}\right), v\right)
$$

$$
s \in L
$$

$\operatorname{argmax} S(i, v)$
$i \in$ parser(s)
$\underset{p}{\operatorname{argmax}} \prod_{s, v} S(s(p), v)$
S(sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$
$\underset{s \in L}{\operatorname{argmax}} \int_{v} S\left(s, v_{0}: v: v_{n}\right)$
$S($ planner, tracks $) S(s$, tracks $) S($ tracks,$v)$

mela	-x 3 120\%	-x.3184 3	-78	+7\% 313 l	Kosh trainticy	Shen Reat	Citar tosar	Qut
Fexer	-2.6ime	$4{ }^{2}$ fire 3	-72 6178	072 7180 ?	Hent fivemesio		matas	Recors
fent -fiets	-frata 8.005	fext Fmi	Whil 26.000	feest -rai	*pai 8.000	-Comers x	6.3728	frart Vidoos
test $\times \frac{1}{}$		Teit or	of 0.000	Test -	\% 4 a,000	-cente ?	- -0.6403	Stee vireot
7f Emin	+1/ Sen 7.9	-Vtan	witsh 1:\%	-vtepmation	iv $\operatorname{tap} 0.9$	fountryth	$1719 \% 15$	
-2mit	-ryte 9	-193th	*.jeryth 45, 00	-tal	*-15M 30.400	\%]m		
-pen	+gan 6.741	-tilt	*-1it 35.176	-bracagt	*pracket 6.	-saparation	*separation 10.	
Lomid Grourd Truth	Lend Reswis	Lami Inay	luat	Prraious	Dism atrwitury	Sheon Eraud Trution	Seu Grid	
Lett mand	Sut Sencture	Cycis feructuren	vien 0 en	Get matis	Erat viper	forist stesos	Lancoly	Disamentis

Siddharth et al 2012

The long road ahead . . .

Coherent stories 3D

Forces \& contact relations

© sodlvs at Youtube.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Erickson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The long road ahead . . .

Coherent stories
3D
Forces \& contact relations
Segmentation
Parts and low-level features

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The long road ahead . . .

Coherent stories
3D
Forces \& contact relations
Segmentation
Parts and low-level features
Theory of mind
Physics
Modification

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

The long road ahead . . .

Coherent stories

3D
Forces \& contact relations
Segmentation
Parts and low-level features
Theory of mind
Physics
Modification
The vast majority of verbs: absolve, admire, anger, approve, bark, bend, chase, cheat, complete, concede, discover, fire, follow, fumble, hurry, race, recruit, reject, scratch, steal, taste, want, etc.
Metaphoric extension etc.

Thanks to many great collaborators

Yevgeni Berzak, Danny Harari, Maximilian Nickel, Candance Ross, Victor Carbarera, Santiago Perez, Boris Katz, Shimon Ullman, Tomaso Poggio

Siddharth Narayanaswamy, Jeffrey Siskind, Sven Dickinson, Song Wang, Haonan Yu, Caiming Xiong

Recognition
Retrieval

Generation

Question answering

Disambiguation

Acquiring language

Images, not videos
Translation

Planning
Theory of mind
S (sentence, video)

$$
\underset{v \in V}{\operatorname{argmax}} S(s, v)
$$

$\operatorname{argmax} S(s, v)$
$s \in L$
$\operatorname{argmax} S\left(\mathbf{Q}\left(s, s_{q}\right), v\right)$
$s \in L$
$\operatorname{argmax} S(i, v)$
$i \in$ parser(s)
$\underset{p}{\operatorname{argmax}} \prod S(s(p), v)$
S(sentence, Flow(image))
$\underset{s^{\prime} \in L_{b}}{\operatorname{argmin}} \int_{v}\left|S\left(s^{\prime}, v\right)-S(s, v)\right|$
$\underset{s \in L}{\operatorname{argmax}} \int_{v} S\left(s, v_{0}: v: v_{n}\right)$
$S($ planner, tracks $) S(s$, tracks $) S($ tracks,$v)$

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course

Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

