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Two notions of intelligence:  
Classifying/recognizing/predicting data vs.  

Explaining/understanding/modeling the world  

• What’s the difference between classification and explanation?  
• What makes a good explanation? 
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Two notions of intelligence:  
Classifying/recognizing/predicting data vs.  

Explaining/understanding/modeling the world  

Both notions have roles to play, but here I’ll emphasize 
explanation, because it is at the heart of human intelligence, 
and much of current AI, machine learning, computational 
neuroscience is so focused on classification. 

(Why?  Building machines that explain and understand is harder than 
building machines that merely recognize and classify.  Classification is 
easier to map to neural networks and neural circuits.) 

But not only are both probably essential, they can interact in 
powerful, probably essential ways! We’ll talk about how deep 
neural networks can help model-based methods work more 
quickly, efficiently – or how model-based methods can help 
model-free methods become richer and more flexible.  
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Two notions of intelligence:  
Classifying/recognizing/predicting data vs.  

Explaining/understanding/modeling the world  

• What’s the difference between classification and explanation?  
• What makes a good explanation? 

• Compact / unifying / nonarbitrary / ”hard to vary” 
• Generative: Output is the world, not how we should perform a task. 
• Causal / actionable for an endless range of tasks, via planning 
• Compositional / flexible / extensible 

Phenomena: the motion of 
objects in the solar 
system. 

Contrast Kepler’s laws 
and Newton’s laws…. © Wikimedia User: Theresa Knott. License CC BY-SA. This content is

excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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• Kepler’s laws: 

• Newton’s laws: 

Law of gravitational force: 

Courtesy of Wikimedia user: Dennis Nilsson. License CC BY.

Courtesy of Wikimedia user: Hankwang. License CC BY.

55



Two notions of intelligence:  

Classifying/recognizing/predicting data vs. 

Explaining/understanding/modeling the world 

 

• What’s the difference between classification and explanation?  
• What makes a good explanation? 

• Compact / unifying / nonarbitrary / ”hard to vary” 
• Generative: Output is the world, not how we should perform a task. 
• Causal / actionable for an endless range of tasks, via planning  
• Compositional / flexible / extensible 

Newton but not Kepler explains… 
• Not just the orbits of planets, but other solar-

system objects.  
• Not just the motion of planets, but also the 

apple I drop right here on Earth.  
• Why some things orbit other things, but not 

others.  
• How you could get a man to the moon, and 

back again.  
• How you could build a rocket or solar sail or 

sling shot to escape Earth’s gravity,  

© Wikimedia User: Theresa Knott. License CC BY-SA. This content is
excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/. 
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The brain as a generative modeling engine  

Kenneth 
Craik 
(1914-1945) 

The Nature of Explanation (1943): 
One of the most fundamental properties of thought is its power of 

predicting events…. It enables us, for instance, to design bridges 
with a sufficient factor of safety instead of building them 
haphazard and waiting to see whether they collapse… If the 
organism carries a ‘small-scale model’ of external reality and of 
its own possible actions within its head, it is able to try out various 
alternatives, conclude which is the best of them, react to future 
situations before they arise, utilize the knowledge of past events 
in dealing with the present and future, and in every way to react 
in a much fuller, safer, and more competent manner to the 
emergencies which face it. Most of the greatest advances of 
modern technology have been instruments which extended the 
scope of our sense-organs, our brains or our limbs. Such are 
telescopes and microscopes, wireless, calculating machines, 
typewriters, motor cars, ships and aeroplanes. Is it not possible, 
therefore, that our brains themselves utilize comparable 
mechanisms to achieve the same ends and that these 
mechanisms can parallel phenomena in the external world as a 
calculating machine can parallel the development of strains in a 
bridge? 7

Portrait photo removed due

to copyright restrictions.



 

 
 

  

  

   
  

 
 

The big question  

How does the mind get so much out of so little?
	

Our minds build rich models of the world and make 
strong generalizations from input data that is sparse, 
noisy, and ambiguous – in many ways far too limited to 
support the inferences we make.   

How do we do it? 

88



 

    
 

  

The big question  

How does the mind get so much out of so little,  
so quickly, so flexibly, on such little energy?
	

99



 

 

  
 

     
   

Visual scene  
perception  

But… 
look around you! 

Photos © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Where are the people?  

Photos © source unknown. Al rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Where are the people?  

1212



  … books? … glasses? 
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Learning and generalizing object  
concepts  

“tufa” 

1414



 

      
   

What’s this?
	

© Omega Pacific. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Photo of rock climbing equipment 
removed due to copyright restrictions. 
See video. 
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Photo of rock climbing equipment 
removed due to copyright restrictions. 
See video. 
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Photos © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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 Concept learning is not simply  
classification  

1919



 
 

 
             

   

 

           
    

   

Understanding events with common-

sense theories  

(Southgate and Csibra) (Heider and Simmel) 
© unknown, attributed to work of V. Southgate and G. Csibra. All rights
reserved. This content is excluded from our Creative Commons license.

For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Intuitive physics: objects, forces and masses
	
Intuitive psychology: beliefs and desires
	
Intuitive sociology: us and them  
Intuitive morality: good and bad
	

2020

© University of Illinois Press. All rights reserved. This content is
excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
Source: Heider, F., & Simmel, M. (1944) "An experimental study in
apparent behavior.“ The American Journal of Psychology, 57, 243-259.
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Learning to play video games the way  
people do?  

Deep Mind, 2015 
Reprinted by permission from Macmillan Publishers Ltd: Nature.
Source: Mnih, V., et al. "Human-level control through deep reinforcement
learning." Nature 518, no. 7540 (2015): 529-533. © 2015. 21



 

  

     
 

       
    

Learning to play video games the way  
people really do  

Courtesy of sean dreilinger on Flickr.
License CC BY-NC-SA.

© Activision. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Learning to play video games the way  
people really do  

(Stadie, Levine, Abbeel 2015) 

Random 

© Bradly Stadie. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Stadie, Bradly C., Sergey Levine, and Pieter Abbeel. "Incentivizing exploration in

reinforcement learning with deep predictive models." arXiv preprint arXiv:1507.00814 (2015).
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The big question  

How does the mind get so much out of so little? 
–		Recovering the entire world around you, from a glance, in a 

flash. 
–		Learning a generalizable concept from just one example.
	
–		Discovering causal relations from just a single observed event. 
–		Seeing forces, and seeing inside other minds, from just the 

motion of a few two-dimensional shapes. 
–		Learning to play games, solve problems, and act in a whole 

new world – all in under one minute. 
–		Understanding the words you’re reading now. 

The goal: A computational framework for understanding 
how people make these inferences, and how they 
can be successful, expressed in engineering terms. 

2424



  

  
    

  
  

  
  

    
 

  
 

 

The problems of induction  

Abstract knowledge.  
(Constraints / Inductive bias / Priors)
	

1. 	How does abstract knowledge guide learning and 
inference from sparse data? 

2. 	What form does abstract knowledge take, across 
different domains and tasks? 

3. 	How is abstract knowledge itself constructed, from 
some combination of innate specifications and 
experience? 

…
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The “Generative models” approach
	
1. How does abstract knowledge guide learning and 

inference from sparse data? 
Bayesian inference in 
probabilistic generative models. 
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2. What form does that knowledge take, across 
different domains and tasks? 

Probabilities defined richly structured symbolic 
representations: spaces, graphs, grammars, logical 
predicates, schemas... Probabilistic Programs 

3. How is that knowledge itself constructed? 
Hierarchical models, with inference at multiple levels. 

Learning models as probabilistic inference; “learning to 
learn”, transfer learning, learning representations and 
learning inductive biases not fundamentally different. 
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 The approach (cont’d)
	
4. How can learning and inference proceed efficiently and 

accurately, even with very complex hypothesis spaces? 
Sampling-based algorithms for approximate inference, e.g., 

MCMC, sequential Monte Carlo (“particle filtering”), 
importance sampling.  Cost-sensitive sampling (“One and 
done”).  Fast initialization with bottom-up recognition models 
(“Neural networks”). 

5.  How can probabilistic inferences be used to drive action?  
Utility-based frameworks for decision and planning under 

uncertainty and risk, such as Bayesian decision theory or 
Markov decision processes (MDPs). 

6. How could these computations be implemented in neural 
hardware, or massively parallel computing machines? 

Probabilistic interpretations of cortical circuitry and neural 
population codes; stochastic digital circuits. 
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1990s-present: Cognition as  
probabilistic inference  

Visual perception [Yuille, Weiss, Simoncelli, Adelson, Richards, Freeman, Feldman, 
Kersten, Knill, Maloney, Olshausen, Jacobs, Pouget, ...] 

Language processing and acquisition [Brent, de Marken, Niyogi, Klein, Manning, 
Jurafsky, Chater, Keller, Levy, Hale, Johnson, Griffiths, Perfors, Tenenbaum, Frank, 
Piantadosi, O’Donnell, Goodman…] 

Motor learning and motor control [Ghahramani, Jordan, Wolpert, Koerding, Kawato, 
Doya, Todorov, Shadmehr, Maloney, …] 

Reinforcement learning [Dayan, Daw,, Niv, Frank, Gershman, Gureckis, …] 

Memory [Anderson, Schooler, Shiffrin, Steyvers, Griffiths, McClelland, Gershman …] 

Attention [Mozer, Huber, Torralba, Oliva, Geisler, Yu, Itti, Baldi, Vul, …] 

Categorization and concept learning [Anderson, Nosfosky, Rehder, Navarro, 
Griffiths, Feldman, Tenenbaum, Rosseel, Goodman, Kemp, Mansinghka, …] 

Reasoning [Chater, Oaksford, Sloman, McKenzie, Heit, Tenenbaum, Kemp, Goodman…] 

Causal inference and learning [Waldmann, Sloman, Steyvers, Griffiths, Tenenbaum, 
Yuille, Lu, Holyoak, Lagnado, … ] 

2828



 

  
  

  
  

  
 

 
    

  

    

Basic cognitive capacities as  
intuitive probabilistic inference  

•		 Similarity (Tenenbaum & Griffiths, BBS 2001; Kemp & Tenenbaum, Cog 
Sci 2005) 

•		 Representativeness and evidential support (Tenenbaum & 
Griffiths, Cog Sci 2001) 

•		 Causal judgment (Steyvers et al., 2003; Griffiths & Tenenbaum, Cog. 
Psych. 2005) 

•		 Coincidences and causal discovery (Griffiths & Tenenbaum, 
Cog Sci 2001; Cognition 2007; Psych. Review, in press) 

•		 Diagnostic inference (Krynski & Tenenbaum, JEP: General 2007) 

•		 Predicting the future (Griffiths & Tenenbaum, Psych. Science 2006) 

2929



  

  

 

       
        

      

Causes and coincidences: 

Mere randomness or a hidden cause? 

(Griffiths & Tenenbaum, Cognition 2007; Psych. Review, 2009) 

Courtesy of American Psychological Association. Used with permission.
Source: Griffiths, T. L., and J. B. Tenenbaum. "Theory-Based Causal
Induction." Psychological Review 116, no. 4 (2009): 661-716.
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  Bayesian measure of evidence:
	
)|(

)|(log
randomdP
latentdP

Random: Latent common cause:
	

C 

x x xx xx x xx x 

uniform 
uniform +  

regularity  
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  Bayesian measure of evidence:
	
)|(

)|(log
randomdP
latentdP

Random: Latent common cause:
	

x x xx x  

uniform  
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Cancer clusters?  
Judging the probability of a hidden environmental cause  

Courtesy of American Psychological Association. Used with permission.
Source: Griffiths, T. L., and J. B. Tenenbaum. "Theory-Based Causal
Induction." Psychological Review 116, no. 4 (2009): 661-716. 3333
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Everyday prediction problems  
(Griffiths & Tenenbaum, Psych Science 2006)
	

•		 You read about a movie that has made $60 million to 
date. How much money will it make in total? 

•		 You see that something has been baking in the oven for 
34 minutes.  How long until it’s ready? 

•		 You meet someone who is 78 years old.  How long will 
they live? 

•		 Your friend quotes to you from line 17 of his favorite 
poem.  How long is the poem? 

•		 You meet a US congressman who has served for 11 
years. How long will he serve in total? 

•		 You encounter a phenomenon or event with an 
unknown extent or duration, ttotal, at a random time or 
value of t <ttotal. What is the total extent or duration ttotal? 

3535



   
   

  
  

   

     

Priors P(ttotal) based on empirically measured durations or 
magnitudes for many real-world events in each class: 

Median human judgments of the total duration or magnitude ttotal of 
events in each class, given one random observation at a duration or 
magnitude t, versus Bayesian predictions (median of P(ttotal|t)). 

See Griffiths and Tenenbaum, “Optimal Predictions in Everyday Cognition.” Psychological Science 17, no. 9 (2006) 3636



 

 Learning words for objects  

“tufa” 

3737



 

 

  
 

 

Word learning as Bayesian inference  
(Xu & Tenenbaum, Psych Review, 2007)  

What is the right prior?
	
What is the right hypothesis space?
	
How do learners acquire that background 
knowledge?  

3838



Word learning as Bayesian inference 

(Xu & Tenenbaum, Psych Review, 2007) 
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Word learning as Bayesian inference 

(Xu & Tenenbaum, Psych Review, 2007) 
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 Property induction  

Gorillas have T9 hormones. 
Seals have T9 hormones. 

Horses have T9 hormones.
	

“Similarity”  
“Typicality”  
“Diversity”  

Gorillas have T9 hormones. 
Seals have T9 hormones. 

Anteaters have T9 hormones.
	

Gorillas have T9 hormones. 
Chimps have T9 hormones. 
Monkeys have T9 hormones. 
Baboons have T9 hormones. 

Horses have T9 hormones.
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Experiments on property induction  
(Osherson, Smith, Wilkie, Lopez, Shafir, 1990)  

• 20 subjects rated the strength of 45 arguments: 
X1 have property P. (e.g., Cows have T4 hormones.)
	
X2 have property P.
	
X3 have property P.
	

All mammals have property P. [General argument] 

• 20 subjects rated the strength of 36 arguments: 
X1 have property P.
	
X2 have property P.
	

Horses have property P. [Specific argument]
	
4242



   
            

 
          
           
         
           
           
         
         
          
     

  

Feature rating data  
(Osherson and Wilkie) 

• People were given 48 animals, 85 features, and asked  
to rate whether each animal had each feature.  

E.g., elephant:  

'gray'  'hairless'  'toughskin'
	
'big' 'bulbous' 'longleg'
	
'tail'  'chewteeth'  'tusks'
	
'smelly' 'walks'  'slow'
	
'strong'  'muscle’ 'quadrapedal'
	
'inactive'  'vegetation'  'grazer'
	
'oldworld' 'bush' 'jungle'
	
'ground'  'timid' 'smart'
	
'group‘, …
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The computational problem  

? 

Horses have T9 hormones. 
Rhinos have T9 hormones. 

Cows have T9 hormones. 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

Horse 

Cow 

Chimp 

Gorilla 

Mouse 

Squirrel 

Dolphin 

Seal 

Rhino 

Elephant 

Features New property  

Cf. semi-supervised learning,
     sparse matrix completion 
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Hierarchical Bayesian Framework  
(Kemp & Tenenbaum, Psych Review, 2009)  

P(form) 

F: form Tree with species at leaf nodes
	

mouse P(structure | form) 
squirrel 

chimp S: structure 
gorilla 

P(data | structure) 

F
1

F
2

F
3

F
4

H
a

s
 T

9
 

h
o

rm
o

n
e

s
 

mouse ? 
squirrel … ?D: data chimp 

gorilla ? 
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A graph-based prior  
(c.f., diffusion model of genetic variation)  

Let dij = length of the edge between objects i and j 
(= if i and j are not connected in S),  

fi = value of the feature for object i.  
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A Gaussian prior ~ N(0, S), with 
(Zhu, Lafferty & Ghahramani, 2003) 

).(~ 1 SS

4646



 

 

 

  

  

  

  

  

  

  

  

  

  

   

  

1

2

3

4

5

6

7

8

9

10

Structure S  

Species 

Species 
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Species 
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Features f New property  
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Results  

Cows have property P. 
Elephants have property P. 

Horses have property P. 

D
at

a 

Model	 Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Dolphins have property P. 
Seals have property P. 

Horses have property P. 
(Osherson et al, Smith et al) 
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Results  
Gorillas have property P. 
Mice have property P. 
Seals have property P. 

All mammals have property P.
	

D
at

a 

Model	 Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of

Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Cows have property P. 
Elephants have property P. 
Horses have property P. 

All mammals have property P.
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Hierarchical Bayesian Framework  

F: form Low-dimensional space of species
	

gorilla 
chimp 

mouse S: structure squirrel 
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mouse 

squirrel D: data chimp 

gorilla 
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… 
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[c.f., Lawrence; 
Smola & Kondor] 
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Cows have property P. 
Elephants have property P. 

Horses have property P.
	

Tr
ee

 
2D

 
Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Gorillas have property P.
	
Mice have property P.
	
Seals have property P.
	

All mammals have property P.
	 5252



 

 

 
  

 

  
 

      
        

        

Reasoning about spatially  
varying properties  

Geographic inference task: e.g., “Given that a certain kind of 
native American artifact has been found in sites near city 
X, how likely is the same artifact to be found near city Y?” 

Tr
ee

 
2D

 

Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58. 53



 

  

 

 

 
    

  

 
  

 

      
    

Do people learn explicit  
structures of different forms?  

A neural-network alternative: 
(Rogers and McClelland, 2004; Saxe, McClelland, Ganguli, 
2013) 

Species 

Features 

Emergent structure:  
clustering on hidden
	
unit activation vectors
	

Tree diagrams © source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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The need for inductive bias  

• Learning from sparse data requires constraints 
or a prior on the hypothesis space. 

• An analogy: Learning a smooth probability 
density by local interpolation (kernel density 
estimation). 

Assuming an appropriately 
structured form for density 
(e.g., Gaussian) leads 
to better generalization 
from sparse data. 

N = 5N = 5
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Beyond similarity-based induction  

• Reasoning based 
on dimensional 
thresholds: (Smith 

Poodles can bite through wire. 

German shepherds can bite through wire. 

et al., 1993) Dobermans can bite through wire. 

German shepherds can bite through wire. 

• Reasoning based 
on causal 
relations: (Medin Salmon carry E. Spirus bacteria. 

et al., 2004; Coley & 
Shafto, 2003) 

Grizzly bears carry E. Spirus bacteria. 

Grizzly bears carry E. Spirus bacteria.
	

Salmon carry E. Spirus bacteria.
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Different priors from different  
kinds of causes  

Chimps have T9 hormones.
	

Gorillas have T9 hormones.
	

Poodles can bite through wire. 

Dobermans can bite through wire. 

Salmon carry E. Spirus bacteria. 

Grizzly bears carry E. Spirus bacteria. 

Taxonomic similarity  

Jaw strength 

Food web relations 
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Property type 
“has T9 hormones” “can bite through wire” “carry E. Spirus bacteria” 

Causal Structure 
taxonomic tree directed chain   directed network 

+ diffusion process       + drift process	               + noisy transmission  
Class D 

Class A 

Class B 

Class D Class A 
Class B	 Class A  

Class F  Class E Class C 
Class D Class C Class C 
Class E Class G Class E 
Class F Class B 
Class G 

Class F 
Properties		 Class G 

Class A  
Class B  
Class C  

. . . . . . . . . Class D  
Class E  
Class F  
Class G  
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Reasoning with linear-threshold properties  
1D

 +
dr
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Tr
ee
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Courtesy of American Psychological Association. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "Structured Statistical Models of
Inductive Reasoning. " Psychological Review 116, no. 1 (2009): 20-58.

Blok et al. Blok et al. Smith et al. Smith et al.
	
4 colleges 5 colleges Adapts to dark Thick skin
	

Elephant 

Hippo 

Camel 
Lion 

Cat 

e.g., “has 
skin that is 
more 
resistant to 
penetration 
than most 
synthetic 
fibers” 
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Reasoning with two property types  

“Given that X has property P, how likely is it that Y does?”  

Herring 

Tuna 
Mako shark 
Sand shark 

Dolphin 
Human 

Kelp 

B
io
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gi

ca
l
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op

er
ty

 
D

is
ea

se
pr
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ty
 

Tree Web 

Sand shark 

(Shafto, Kemp, Mako shark Human Herring Tuna KelpBonawitz, 
Coley & 
Tenenbaum) 

Dolphin 
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“Common-sense reasoning” as sparse matrix completion: at the 
heart of classical associationism, probabilistic or connectionist 
models of semantic cognition, contemporary machine-learning 
approaches to building general AI systems. 

61

But it’s not going to work. 
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Never-Ending 

Language 

Learning 

(NELL) 

Lohr, Steve. “Aiming to Learn as
	
We Do, a Machine Teaches Itself.”  
The New York Times, October 4,  
2010.  
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Never-Ending 

Language 

Learning 

(NELL) 

Text excerpt removed due to copyright restrictions.  
See Lohr, Steve. “Aiming to Learn as We Do, a Machine Teaches Itself.”  
The New York Times, October 4, 2010.  
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Engineering common sense:  
what, and how?  
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The roots of common sense  

Images of children playing removed due to copyright restrictions. Please see the
video or http://providencechildrensmuseum.blogspot.com/2012/05/loosen-up.html.

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.

Several other similar photos removed 
due to copyright restrictions. See video. 
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Engineering common sense:  
what, and how?  

What: The “common sense core” 
Human thought is structured around a basic understanding of  

physical objects, intentional agents, and their interactions  
– intuitive physics (forces, masses…) and psychology  
(desires, beliefs, plans…) [Spelke, Baillargeon, Gergeley, Csibra, Carey, 
Kanwisher, Saxe, Dehaene, Tomasello…] 

Develops early in infancy 
Shared to some extent with other species 
Enriched and extended massively in humans 
The targets of understanding visual scenes, language, and action planning. 

How can these internal models be realized computationally? 
How can they be studied rigorously in behavior? 
How are they instantiated in neural circuits? 
How are they built, through evolution, development and learning?
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The development of object  
knowledge in infancy  

http://www.bbc.com/news/technology-19637175 https://www.youtube.com/watch?v=0jaxzURLylc 

© Mike Zathureczky. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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The development of object  

2-3 months
	
knowledge in infancy  

(Baillargeon, Spelke et al) 

3 months 

5 months 

6.5 months 

12 months 

68

4-5 months
	

8 months
	

68

Courtesy of Elsevier, Inc., http://www.sciencedirect.com.
Used with permission.
Source: Baillargeon, Renée. "Infants' understanding of the
physical world." Journal of the Neurological Sciences 143,
no. 1-2 (1996): 199-199.

http://www.sciencedirect.com


 

  
  
 

  
   

 

    
   

How knowledge grows  
Learning and abstraction as theory-building (or, the “child 
as scientist”, not “data analyst”). Knowledge grows through 
hypothesis- and explanation-driven interpretations of sparse 
data, causal learning, learning theories, learning compositional 
abstractions, learning to learn, exploratory learning, social
learning. [Carey, Karmiloff-Smith, Gopnik, Schulz, Feigenson, …] 

11 months 
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Engineering common sense:  
what, and how?  

What: The “common sense core” 
How: A modeling engine built on probabilistic programs 

(Goodman, Mansinghka, Roy, Freer, …) [See: probmods.org] 
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Bayesian networks:  
Probabilities on graphs  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 7171

https://ocw.mit.edu/help/faq-fair-use/


   
 

 
 

 
 

 
 

 
 

 

 

  

     
   

Bayesian networks:  
Probabilities on graphs  

Bayes nets (and probabilistic graphical models more 
generally) brought a potent combination to AI and many 
fields: 

1. General-purpose languages for representing the 
structure of the world. 

2. General-purpose algorithms for inference and decision 
under uncertainty. 

But they’re not enough. 
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 7272
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Modeling the world with programs  

73
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   Model building as program learning  

74

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

74

© Wikimedia User: Theresa Knott. License CC BY-SA.
This content is excluded from our Creative Commons 
license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 

https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/


 

    

 

Probabilistic programs: Church, probmods.org 

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014) 

From https://probmods.org  
7575
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Probabilistic programs: Church, probmods.org 

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014) 
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Probabilistic programs: Church, probmods.org 

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014) 
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Probabilistic programs: Church, probmods.org 

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014) 

7878

http:probmods.org


 

    
Probabilistic programs: Church, probmods.org 

(Goodman, Mansinghka, Roy, Bonawitz & Tenenbaum 2008; Goodman & Tenenbaum, 2014) 
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Engineering common sense:  
what, and how?  

What: The “common sense core” 
How: A modeling engine built on probabilistic programs 

(Goodman, Mansinghka, Roy, Freer, …) [See: probmods.org] 
Representations: the “game engine in your head”
	

(graphics engine, physics engine, planning engine)
	

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Probabilistic programs  

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Beliefs Desires 
 Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.

physics 
World state (t) World state (t+1) 

graphics 
Actions 

planning 

agent 
Image (t) Image (t+1) 

Photo of young students in 
crosswalk, with crossing guard, physics 
removed due to copyright 
restrictions. 

World Agent 
state state 

perception 
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Engineering common sense:  
what, and how?  

What: The “common sense core” 
How: A modeling engine built on probabilistic programs 

(Goodman, Mansinghka, Roy, Freer, …) [See: probmods.org] 

Representations: the “game engine in your head”
	
(graphics engine, physics engine, planning engine)
	

Algorithms: “inference programs”
	
Really fast: Bottom-up guesses based on cached experience.  

(Perception)  

Fast: Forward simulation (Prediction, imagination, top-down percepts) 

Slower: Sampling by reverse simulation.  (Thinking, reasoning) 

Slow (& really slow, & really really slow): Stochastic search (Learning, 
development, evolution) 

8282
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The intuitive physics engine  
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)
	

83

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS
110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.
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Vision as inverse graphics  

World state (t)
	

Prob. approx. rendering 

Image (t)
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Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS
110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.
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Vision as inverse graphics  

Markov Chain 
Monte Carlo (MCMC): 
Metropolis-Hastings 

Scene 

Prob. approx. rendering 

Image
	
Lo

g
p

ro
b

ab
ili

ty
 

Time Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene
understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.
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Vision as inverse graphics  

Markov Chain 
Monte Carlo (MCMC): 
Metropolis-Hastings Scene 

Prob. approx. rendering 

Image
	
Lo

g
p

ro
b

ab
ili

ty
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Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene Time
understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013
National Academy of Sciences, U.S.A.



 

 

  

    

       

Architecture (Kulkarni et al., CVPR 2015)
	

Random 
samples … 

Courtesy of Ilker Yildirim. Used with permission.

From Yildirim, Kulkarni, Friewald, and Tenenbaum (2015)  
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Architecture 

Summary statistic  
(Feature vector) 

O
b
se
rv
e
d

In
fe
rr
e
d

(Kulkarni et al., CVPR 2015) 
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Architecture 

O
b
se
rv
e
d

In
fe
rr
e
d

Convolutional neural network 

(Kulkarni et al., CVPR 2015) 
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Generalizing across (Kulkarni et al., CVPR 2015) 

viewing conditions 

Courtesy of Tejas Kulkarni. Used with permission.
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Human body pose estimation  

Courtesy of Tejas Kulkarni. Used with permission.

(Kulkarni et al., CVPR 2015) 
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Human body pose estimation  

Courtesy of Tejas Kulkarni. Used with permission. (Kulkarni et al., CVPR 2015) 
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Inferring generic 3D shape  

         (Kulkarni et al., CVPR 2015) Courtesy of Tejas Kulkarni. Used with permission.
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Faster (and more brain-like) inference  
(Yildirim, Kulkarni, Freiwald, 
Tenenbaum, Cog Sci ‘15, in prep) 

Learning to do inference a la Helmholtz 
machine (Hinton et al., 1995): 
- Initialize inference with recognition 

model (a deep neural network). 
- Trained in a self-supervised way  

from fantasies of the generative model. 

Courtesy of Ilker Yildirim. Used with permission.
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Psychophysics and neural data  
(Yildirim, Kulkarni, Freiwald, Tenenbaum, Cog Sci ‘15, in prep)  

Courtesy of Ilker Yildirim. Used with permission.
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Psychophysics and neural data  
(Yildirim, Kulkarni, Freiwald, Tenenbaum, Cog Sci ‘15, in prep)  

(Freiwald 
and Tsao, 
2010) 

M
on

ke
y

M
od

el

Courtesy of Ilker Yildirim. Used with permission.
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The intuitive physics engine  
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)
	

Prob.  
approx.
	
Newton
	

World state (t)
	 World state (t+1) …… World state (t-1) 

Prob. approx. rendering 

Image (t-1) Image (t) Image (t+1)
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The intuitive physics engine  
(Battaglia, Hamrick, Tenenbaum, PNAS 2013)
	

Prob.  
approx.
	
Newton
	

World state (t)
	 World state (t+1) …… World state (t-1) 

Prob. approx. rendering 

Image (t-1) Image (t) Image (t+1)
	

 = state uncertainty 
f = latent force magnitude
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The intuitive physics engine 

(Battaglia, Hamrick, Tenenbaum, PNAS 2013) 

Courtesy of National Academy of Sciences, U. S. A. Used with permission.
Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene 
understanding." PNAS 110 no. 45 (2013): 18327-18332 Copyright © 2013

National Academy of Sciences, U.S.A.

Ground truth physics 

99

 = 0.2
	
f = 0.2
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The intuitive psychology engine  

Beliefs Desires 

Actions 

planning 

World 
state 

Agent 
state 

perception 

physics 

agent 

Photos (1) from TV show The Office 
(2) young students in crosswalk, with 
crossing guard, removed due to 
copyright restrictions. 
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Goal inference as 
World Agent 

inverse planning state state
(Baker, Saxe, Tenenbaum, 2009) 

Beliefs Desires 

 planning 

 perception 

agent 

)()(),( aCsRsaU 

1
	
r = 0.98 

P
eo

pl
e


	

0 
Model 0 0.5 1 

Actions 

R(s): large reward for 
achieving goal 

C(a): small cost per step 

M
od

el
 

P
eo

pl
e 
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physics 
Joint inference of 

World Agent beliefs and desires 
state state (Baker, Saxe, Tenenbaum, Cog Sci 2011, 

in prep) 

Desires inference Beliefs 

 planning 

perception 

Actions
agent

Desires Initial Beliefs 

© Christopher Baker. All rights reserved. This content is excluded from our Creative
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Joint inference of beliefs and desires  
(Baker, Saxe, Tenenbaum, Cog Sci 2011, in prep)
	

Desires Initial Beliefs 

© Christopher Baker. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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If you bump the table…
	

Model simulates table “bumps” 100% 100% 
integrating over a range of force 

yellow red magnitudes and directions.  (R = 0.84) 
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Varying objects, constraints, forces  
Uncued forces
	

Cued forces
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Probabilistic programs for model building  
(“program-learning” programs)  

World state (t) World state (t+1) 

Image (t) Image (t+1) 

physics 

graphics 

… 

Learning 

107

Courtesy of National Academy of Sciences, U. S. A. Used with permission.

Source: Battaglia, P. W., et al. "Simulation as an engine of physical scene understanding." PNAS

110 no. 45 (2013): 18327-18332 Copyright © 2013 National Academy of Sciences, U.S.A.
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The child as scientist  
Learning as “theory building”, not “data analysis”. 
Knowledge grows through hypothesis- and explanation-driven 
interpretations of sparse data, causal learning, learning theories, 
learning compositional abstractions, learning to learn, 
exploratory learning, social learning. 
[Carey, Karmiloff-Smith, Gopnik, Schulz, Feigenson…] 
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Explaining the dynamics of  
development? (w/ T. Ullman, Spelke, others)  

9 months 

12 months 

15 months 

109

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham. "Action
experience alters 3-month-old infants' perception of others' actions." Cognition 96,
no. 1 (2005): B1-B11.
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Explaining the dynamics of development? (w/ T. Ullman, 

Spelke, others) 

9 months 

12 months 

15 months 

Capture different knowledge stages 
with a sequence of probabilistic 
programs? 
 
Explain the trajectory of stages as 
rational statistical inference in the 
space of programs? 

rights reserved. This content
is excluded from our Creative
Commons license. For more
information, see https://ocw.

mit.edu/help/faq-fair-use/.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Sommerville, Jessica A., Amanda L. Woodward, and Amy Needham. "Action
experience alters 3-month-old infants' perception of others' actions." Cognition 96,
no. 1 (2005): B1-B11.

110

3 months 

5 months 

6.5 months
 

12.5 months
 

© Psychology Press. All

Courtesy of Elsevier, Inc., http://www.sciencedirect.com.
Used with permission.
Source: Baillargeon, Renée. "Infants' understanding of the
physical world." Journal of the Neurological Sciences 143,
no. 1-2 (1996): 199-199.
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Conclusion  
What makes us so smart? 
1.	 How we start: Common-sense core theories of intuitive physics and 

intuitive psychology. 
2.	 How we grow: Learning as theory construction, revision and 

refinement. 

The tools of probabilistic programs and program induction are beginning  
to let us reverse-engineer these capacities, with languages that are:
	
–		Probabilistic. 
–		Generative. 
–		Causally structured 
–		Compositionally structured: flexible, fine-grained dependencies, 

hierarchical, recursive, unbounded 

We have to view the brain not simply as a pattern-recognition device, but as a 
modeling engine, an explanation engine – and we have to understand how 
these views work together. 

Much promise but huge engineering and scientific challenges remain… full of 
opportunities for bidirectional interactions between cognitive science, 
neuroscience, developmental psychology, AI and machine learning. 
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