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ML Desert Island Compilation 

An introduction to  essential Machine Learning: 
•Concepts 
•Algorithms 
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PART II  

PART III  

PART IV  

•Local methods 
•Bias-Variance and Cross Validation 

•Regularization I: Linear Least Squares  
•Regularization II: Kernel Least Squares  

•Variable Selection: OMP 
•Dimensionality Reduction: PCA 

•Matlab practical session  
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PART I 
•Local methods 
•Bias-Variance and Cross Validation 

GOAL: Investigate the trade-off between stability and fitting   starting 
from simple machine learning approaches 
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CHAPTER 1

Statistical Learning Theory

Machine Learning deals with systems that are trained from data rather than being explicitly pro-
grammed. Here we describe the data model considered in statistical learning theory.

1.1. Data

The data, called training set, is a set of n input-output pairs,

S = {(x
1

, y
1

), . . . , (xn, yn)}.
Each pair is called an example. We consider the approach to machine learning based on the so called
learning from examples paradigm.

Given the training set, the goal is to learn a corresponding input-output relation. To make sense of
this task we have to postulate the existence of a model for the data. The model should take into account
the possible uncertainty in the task and in the data.

1.2. Probabilistic Data Model

The inputs belong to an input space X , we assume throughout that X ✓ RD. The outputs belong
to an output space Y . We consider several possible situations: regression Y ✓ R, binary classification
Y = {�1, 1} and multi-category (multiclass) classification Y = {1, 2, . . . , T}. The space X ⇥ Y is called
the data space.

We assume there exists a fixed unknown data distribution p(x, y) according to which the data are
identically and independently distributed (i.i.d.). The probability distribution p models different sources
of uncertainty. We assume that it factorizes as p(x, y) = pX(x)p(y|x), where

• the conditional distribution p(y|x), see Figure 1, can be seen as a form of noise in the output.
For example, in regression the following model is often considered y = f⇤

(x) + ✏, where f⇤ is
a fixed unknown function and ✏ is random noise, e.g. standard Gaussian N (0,�I), � 2 [0,1).
In classification, a noiseless situation corresponds to p(1|x) = 1 or 0 for all x.

YX

p (y|x)

x

FIGURE 1. For each input x there is a distribution of possible outputs p(y|x).
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The goal of supervised learning is to find an underlying input-output relation 

f(xnew) ⇠ y, 

given data. 

The data, called training set, is a set of n input-output pairs, 

S = {(x
1

, y
1

), . . . , (xn, yn)}. 
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CHAPTER 2

Local Methods

We describe a simple yet efficient class of algorithms, the so called memory based learning algo-
rithms, based on the principle that nearby input points should have the similar/same output.

2.1. Nearest Neighbor

Consider a training set

S = {(x
1

, y
1

), . . . , (xn, yn)}.

Every new input point is assigned the same output as its nearest input in the training set. We add few
comments. First, while in the above definition we simply considered the Euclidean norm, the method
can be promptly generalized to consider other measure of similarity among inputs. For example if the
input are binary strings, i.e. X = {0, 1}D, one could consider the Hamming distance

dH(x, x̄) =
1

D

DX

j=1

1
[xj 6=x̄j

]

where xj is the j-th component of a string x 2 X .
Second, the complexity of the algorithm for predicting any new point is O(nD)– recall that the complex-
ity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN can be fairly sensitive
to noise.

2.2. K-Nearest Neighbor

Consider the array of distances of a new point x̄ to the input points in the training set,

dx̄ = (kx̄� xik2)ni=1

Let sx̄ be the above array sorted in increasing order and Ix̄ the corresponding vector of indices. Let
Kx̄ = {I1x̄, . . . , IKx̄ } be the array of the first K entries of Ix̄. The K-nearest neighbor estimator (KNN) is
defined as,

ˆf(x̄) =
X

i02K
x̄

yi0 ,

or ˆf(x̄) =

1

K

P
i02K

x̄

yi0 . In classification KNN can be seen as a voting scheme among the K nearest
neighbors and K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to NN for K = 1).
When K increases the estimator becomes more stable. In classification, it eventually simply becomes the
ratio of the number of elements for each class. The question of how to best choose K will be the subject
of a future discussion.

3
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Local Methods: Nearby points have similar labels 

Nearest Neighbor 
Given an input x̄, let 

i0 = arg min kx̄� xik2 
i=1,...,n 

and define the nearest neighbor (NN) estimator as 

fˆ(x̄) =  yi0 . 

How does it work?  8



2.3 Least Squares and Nearest Neighbors 15

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

15-Nearest Neighbor Classifier 
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CHAPTER 2

Local Methods

We describe a simple yet efficient class of algorithms, the so called memory based learning algo-
rithms, based on the principle that nearby input points should have the similar/same output.

2.1. Nearest Neighbor

Consider a training set
S = {(x

1

, y
1

), . . . , (xn, yn)}.
Given an input x̄, let

i0 = arg min

i=1,...,n
kx̄� xik2

and define the nearest neighbor (NN) estimator as

ˆf(x̄) = yi0 .

Every new input point is assigned the same output as its nearest input in the training set. We add few
comments. First, while in the above definition we simply considered the Euclidean norm, the method
can be promptly generalized to consider other measure of similarity among inputs. For example if the
input are binary strings, i.e. X = {0, 1}D, one could consider the Hamming distance

dH(x, x̄) =
1

D

DX

j=1

1
[xj 6=x̄j

]

where xj is the j-th component of a string x 2 X .
Second, the complexity of the algorithm for predicting any new point is O(nD)– recall that the complex-
ity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN can be fairly sensitive
to noise.

2.2. K-Nearest Neighbor

or ˆf(x̄) =

1

K

P
i02K

x̄

yi0 . In classification KNN can be seen as a voting scheme among the K nearest
neighbors and K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to NN for K = 1).
When K increases the estimator becomes more stable. In classification, it eventually simply becomes the
ratio of the number of elements for each class. The question of how to best choose K will be the subject
of a future discussion.

3
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K-Nearest Neighbors 

Consider 
= (kx̄� xik2) 

=1 
n
i

the array of distances of a new point x̄ to the input points in the training set. Let 
d ̄x 

s

be the above array sorted in increasing order and 
x̄  

I

the corresponding vector of indices, and 
x̄  

K = {I 1x̄ 
K 
x̄ } , . . . , I  x̄  

be the array of the first K entries of I ̄x . The K-nearest neighbor estimator (KNN) is defined as, 

ˆf(x̄) =  
X 

yi0 ,  
i02K

x̄ 
10



2.3 Least Squares and Nearest Neighbors 15

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

15-Nearest Neighbor Classifier 
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the corresponding vector of indices, and

Kx̄ = {I1x̄, . . . , IKx̄ }

be the array of the first K entries of Ix̄. The K-nearest neighbor estimator (KNN) is defined
as,

f̂(x̄) =
X

i02K
x̄

yi0 ,

or f̂(x̄) = 1
K

P
i02K

x̄

yi0 . In classification KNN can be seen as a voting scheme among the K
nearest neighbors and K is taken to be odd to avoid ties. The parameter K controls the
stability of the KNN estimate: when K is small the algorithm is sensitive to the data (and
simply reduces to NN for K = 1). When K increases the estimator becomes more stable.
In classification, it eventually simply becomes the ratio of the number of elements for each
class. The question of how to best choose K will be the subject of a future discussion.

4.3 Parzen Windows

In K
A mor

where k : X ⇥X ! [0, 1] is a suitable function, which can be seen as a similarity measure
on the input points. The function k defines a window around each point and is sometimes
called a Parzen window. A classification rule is obtained considering the sign of f̂(x̄).

Many examples of k depend on the distance kx � x0k, x, x0 2 X. For example we can
consider

k(x0, x) = 1kx�x0kr.

This choice induce a Parzen window analogous to KNN, here the parameter K is replaced
by the radius r. More generally it is interesting to have a decaying weight for point which
are further away. For example considering

k(x0, x) = (1� kx� x0k)+1kx�x0kr,

where (a)+ = a, if a > 0 and (a)+ = 0, otherwise. Another possibility is to consider fast
decaying functions such as a Gaussian

k(x0, x) = e�kx�x0k2/2�2
.

or an exponential

k(x0, x) = e�kx�x0k/
p
2�.

In all the above methods there is a parameter r or � that controls the influence that each
neighbor has on the prediction.

4-2
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In KNN each of the K neighbors has equal weights in determining the output of a new point.
A more general approach is to consider estimators of the form,

f̂(x̄) =

Pn
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CHAPTER 2

Local Methods

We describe a simple yet efficient class of algorithms, the so called memory based learning algo-
rithms, based on the principle that nearby input points should have the similar/same output.

2.1. Nearest Neighbor

Consider a training set
S = {(x

1

, y
1

), . . . , (xn, yn)}.
Given an input x̄, let

i0 = arg min

i=1,...,n
kx̄� xik2

and define the nearest neighbor (NN) estimator as

ˆf(x̄) = yi0 .

Every new input point is assigned the same output as its nearest input in the training set. We add few
comments. First, while in the above definition we simply considered the Euclidean norm, the method
can be promptly generalized to consider other measure of similarity among inputs. For example if the
input are binary strings, i.e. X = {0, 1 D, one could consider the Hamming distance

where xj is the j-th component of a string x 2 X .
Second, the complexity of the algorithm for predicting any new point is O(nD)– recall that the complex-
ity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN can be fairly sensitive
to noise.

2.2. K-Nearest Neighbor

Consider
dx̄ = (kx̄� xik2)ni=1

the array of distances of a new point x̄ to the input points in the training set. Let

sx̄

be the above array sorted in increasing order and

Ix̄

the corresponding vector of indices, and

Kx̄ = {I1x̄, . . . , IKx̄ }

be the array of the first K entries of Ix̄. The K-nearest neighbor estimator (KNN) is defined as,

ˆf(x̄) =
X

i02K
x̄

yi0 ,

or ˆf(x̄) =

1

K

P
i02K

x̄

yi0 . In classification KNN can be seen as a voting scheme among the K nearest
neighbors and K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to NN for K = 1).
When K increases the estimator becomes more stable. In classification, it eventually simply becomes the
ratio of the number of elements for each class. The question of how to best choose K will be the subject
of a future discussion.
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Local Methods
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input are binary strings, i.e. one could consider the Hamming distance
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ity of multiplying two D-dimensional vectors is O(D). Finally, we note that NN can be fairly sensitive
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K
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yi0 . In classification KNN can be seen as a voting scheme among the K nearest
neighbors and K is taken to be odd to avoid ties. The parameter K controls the stability of the KNN
estimate: when K is small the algorithm is sensitive to the data (and simply reduces to NN for K = 1).
When K increases the estimator becomes more stable. In classification, it eventually simply becomes the
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NN each of the K neighbors has equal weights in determining the output of a new point.
e general approach is to consider estimators of the form,

or
Exponential k(x0, x) = edkxdx0k/

p
2a

Remarks:  

Generalization I: closer points should count more 
Pn

i=1 yik(x̄, xi) 0k2/2a20 dkxdxf̂(x̄) =  , Gaussian k(x , x) =  e .Pn
i=1 k(x̄, xi) 

Parzen Windows 

Generalization II: other metric/similarities 
} 

generalized D
1 X

X = {0, 1}D , dH (x, x̄) =  1
[xj 6 xj 

]=¯D 
j=1 

There is one parameter controlling fit/stability  
12



How do we choose it?  

Is there an optimal value?  

Can we compute it?  
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ISML-II: Machine Learning Spring 2014

Lecture 5- Bias Variance Trade-O↵
Lecturer: Lorenzo Rosasco Scribe: Lorenzo Rosasco

Here we ask the question of how to choose K: is there an optima choice of K? Can it be
computed in practice? Towards answering these questions we investigate theoretically the
question of how K a↵ects the performance of the KNN algorithm.

5.1 Tuning and Bias Variance Variance Decomposition

We next characterize the corresponding minimization problem. For the sake of simplicity we
consider a regression model

y

i

= f⇤(xi

) + �

i

, E�
I

= 0,E�2
i

= �

2
i = 1, . . . , n
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Figure 5.1. The Bias-Variance Tradeo↵. In the KNN algorithm the parameter K controls the achieved

(model) complexity.

5.2 The Bias Variance Trade-O↵

We are ready to discuss the behavior of the (point-wise) expected loss of the KNN algorithm
as a function of K. As it is clear from the above equation, the variance decreases with K.
The bias is likely to increase with K, if the function f⇤ is suitably smooth. Indeed, for small
K the few closest neighbors to x will have values close to f⇤(x), so their average will be
close to f⇤(x). Whereas, as K increases neighbors will be further away and their average
might move away from f⇤(x). A larger bias variance is preferred when data are few/noisy
to achieve a better control of the variance, whereas the bias can be decreased as more data
become available, hence reducing the variance. For any given training set, the best choice
for K would be the one striking the optimal trade-o↵ between bias and variance (that is the
value minimizing their sum).

5.3 Cross Validation

While instructive, the above analysis is not directly useful in practice since the data distribu-
tion, hence the expected loss, is not accessible. In practice, data driven procedures are used
to find a proxy for the expected loss. The simplest such procedure is called hold-out cross
validation. Part of the training S set is hold-out, to compute a (holdout ) error to be used
as a proxy of the expected error. An empirical bias variance trade-o↵ is achieved choosing
the value of K that achieves minimum hold-out error. When data are scarce the hold-out
procedure, based on a simple ”two ways split” of the training set, might be unstable. In this
case, so called V -fold cross validation is preferred, which is based on multiple data splitting.
More precisely, the data are divided in V (non overlapping) sets. Each set is hold-out and
used to compute an hold-out error which is eventually averaged to obtained the final V -fold
cross validation error. The extreme case where V = n is called leave-one-out cross validation.

5.3.1 Conclusions: Beyond KNN

Most of the above reasonings hold for a large class of learning algorithms beyond KNN.
Indeed, many (most) algorithms depend one one or more parameter controlling the bias-
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Is there an optimal value? YES! Can we compute it?  
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…enter Cross Validation  

Split data: train on some, tune on some other  
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Validation

Validation

Validation

Validation

Cross Validation Flavors  

Validation  

Hold-Out  
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Cross Validation Flavors  

Validation 

Validation 

Validation 

Validation 

Validation 

V-Fold, (V=n is Leave-One-Out)  
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End of PART I 
•Local methods 
•Bias-Variance and Cross Validation  

Stability -  Overfitting -  Bias/Variance - Cross-Validation  

End of the Story?  
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Distance vs volume in high dimensions

L. Rosasco Manifold Regularization

      
      

High Dimensions and Neighborhood 

tell me the length of the edge  
of a cube containing 1% of the  
volume of a cube with edge 1  

Cubes and Dth-roots 

Curse of dimensionality! 
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PART II  
•Regularization I: Linear Least Squares
•Regularization II: Kernel Least Squares 

GOAL: Introduce the basic (global) regularization methods with 
parametric and non parametric models 

Going Global + Impose Smoothness 
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In this class we introduce a class of learning algorithms based Tikhonov regularization,

a.k.a. penalized empirical risk minimization and regularization. In particular, we focus on

the algorithm defined by the square loss.

7.1 Regularized Least Squares

(7.1)

A motivation for considering the above scheme is to view the empirical error

1

n

nX

i=1

(yi � wTxi))
2,

as a proxy for the expected error

Z
dxdyp(x, y)(y � wTx))2.

The term wTw is a regularizer and help preventing overfitting.

The term wTw = kwk2 is called regularizer and controls the stability of the solution.

The parameter � balances the error term and the regularizer. Algorithm (7.1) is an instance

of Tikhonov regularization, also called penalized empirical risk minimization. We have im-

plicitly chosen the space of possible solution, called the hypotheses space, to be the space of

linear functions, that is

H = {f : RD ! R : 9w 2 RD
such that f(x) = xTw, 8x 2 RD},

so that finding a function fw reduces to finding a vector w. As we will see in the following,

this seemingly simple example will be the basis for much more complicated solutions.

7.2 Computations

In this case it is convenient to introduce the n times D matrix Xn, where the rows are the

input points, and the n by 1 vector Yn where the entries are the corresponding outputs.

With this notation

1

n

nX

i=1

(yi � wTxi))
2
=

1

n
kYn �Xnwk2.
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Of all the principles which can be proposed for that purpose, I 
think there is none more general, more exact, and more easy of 
application, that of which we made use in the preceding 
researches, and which consists of rendering the sum of squares 
of the errors a minimum. 

(Legendre 1805) 

We consider the following algorithm 

1 n
T

min 
X

(yi � w xi))
2 

T w2RD n
f(x) = w x i=1 

Image of Andrey Nikolayevich Tychonoff
removed due to copyright restrictions.
Please see the video.

This image is in the public domain.

+ �w T w, � � 0.  

? ? 

Tikhonov ‘62 Phillips ‘62 Hoerl et al. ‘62  
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In this class we introduce a class of learning algorithms based Tikhonov regularization,

a.k.a. penalized empirical risk minimization and regularization. In particular, we focus on

the algorithm defined by the square loss.

7.1 Regularized Least Squares

We consider the following algorithm

(7.1)

A motivation for considering the above scheme is to view the empirical error

1

n

nX

i=1

(yi - wTxi))
2,

as a proxy for the expected error

Z
dxdyp(x, y)(y - wTx))2.

The term wTw is a regularizer and help preventing overfitting.

The term wTw = kwk2 is called regularizer and controls the stability of the solution.

The parameter A balances the error term and the regularizer. Algorithm (7.1) is an instance

of Tikhonov regularization, also called penalized empirical risk minimization. We have im-

plicitly chosen the space of possible solution, called the hypotheses space, to be the space of

linear functions, that is

H = {f : RD ! R : 9w 2 RD
such that f(x) = xTw, 8x 2 RD},

so that finding a function fw reduces to finding a vector w. As we will see in the following,

this seemingly simple example will be the basis for much more complicated solutions.

7.2 Computations

In this case it is convenient to introduce the n times D matrix Xn, where the rows are the

input points, and the n by 1 vector Yn where the entries are the corresponding outputs.

With this notation

1

n

nX

i=1

(yi - wTxi))
2
=

1

n
kYn -Xnwk2.
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A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

(XT
nXn + �nI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn + �I

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter � controls the invertibility of the matrix

(XT
nXn + �nI).

7.3 Interlude: Linear Systems

Consider the problem

Ma = b,

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M�1b.

• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then

M�1
= diag(1/�1, . . . , 1/�D), (M + �I)�1

= diag(1/(�1 + �), . . . , 1/(�D + �)

• If M is symmetric and positive definite, then considering the eigendecomposition

M�1
= V ⌃V T , ⌃ = diag(�1, . . . , �D), V V T

= I,

then

M�1
= V ⌃

�1V T , ⌃

�1
= diag(1/�1, . . . , 1/�D),

and

(M + �I)�1
= V ⌃� = V T , ⌃� = diag(1/(�1 + �), . . . , 1/(�D + �)

The ratio �D/�1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering

7-2

ISML-II Lecture 7 — Spring 2014

A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

� 2

n
XT

n (Yn �Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn + gI

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter g controls the invertibility of the matrix

(XT
nXn + gnI).

7.3 Interlude: Linear Systems

Consider the problem

Ma = b,

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M�1b.

• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then

M�1
= diag(1/�1, . . . , 1/�D), (M + gI)�1

= diag(1/(�1 + g), . . . , 1/(�D + g)

• If M is symmetric and positive definite, then considering the eigendecomposition

M�1
= V ⌃V T , ⌃ = diag(�1, . . . , �D), V V T

= I,

then

M�1
= V ⌃

�1V T , ⌃

�1
= diag(1/�1, . . . , 1/�D),

and

(M + gI)�1
= V ⌃� = V T , ⌃� = diag(1/(�1 + g), . . . , 1/(�D + g)

The ratio �D/�1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering

7-2

1 nX 
T T

min (yi - w xi))
2 
+ Aw w, A > 0. 

w2RD n 
i=1 

Computations? 

1 X 
T 1Notation

n

(yi - w xi))
2 
= kYn -Xnwk2 . 

n n 
i=1 

2  XT 
(Yn  Xnw), and, 2w. Setting gradients… n n 

…to zero 
(Xn

T Xn + gnI)w = Xn
T Yn 

OK, but what is this doing?  
24



ISML-II Lecture 7 — Spring 2014

A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

� 2

n
XT

n (Yn �Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

(XT
nXn +  nI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn +  I

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter  controls the invertibility of the matrix

(XT
nXn +  nI).

7.3

Consider the problem

Ma = b,

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M(1b.

• If M is a diagonal M = diag( 1, . . . ,  D) where  i 2 (0,1) for all i = 1, . . . , D, then

M(1
= diag(1/ 1, . . . , 1/ D), (M +  I)(1

= diag(1/( 1 +  ), . . . , 1/( D +  )

• If M is symmetric and positive definite, then considering the eigendecomposition

M(1
= V ⌃V T , ⌃ = diag( 1, . . . ,  D), V V T

= I,

then

M(1
= V ⌃

(1V T , ⌃

(1
= diag(1/ 1, . . . , 1/ D),

and

(M +  I)(1
= V ⌃, = V T , ⌃, = diag(1/( 1 +  ), . . . , 1/( D +  )

The ratio  D/ 1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering

7-2

ISML-II Lecture 7 — Spring 2014

A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

� 2

n
XT

n (Yn �Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

(XT
nXn + �nI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn + �I

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter � controls the invertibility of the matrix

(XT
nXn + �nI).

7.3 Interlude: Linear Systems

Consider the problem

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M 1b.

• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then

M 1
= diag(1/�1, . . . , 1/�D), (M + �I) 1 = diag(1/(�1 + �), . . . , 1/(�D + �)

• If M is symmetric and positive definite, then considering the eigendecomposition

M 1
= V ⌃V T , ⌃ = diag(�1, . . . , �D), V V T

= I,

then

M 1
= V ⌃

 1V T , ⌃

 1
= diag(1/�1, . . . , 1/�D),

and

(M + �I) 1 = V ⌃� = V T , ⌃� = diag(1/(�1 + �), . . . , 1/(�D + �)

The ratio �D/�1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering

7-2

ISML-II Lecture 7 — Spring 2014

A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

� 2

n
XT

n (Yn �Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

(XT
nXn + AnI)w = XT

n Yn.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn + AI

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter A controls the invertibility of the matrix

(XT
nXn + AnI).

7.3 Interlude: Linear Systems

Consider the problem

Ma = b,

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M-1b.

• If M is symmetric and positive definite, then considering the eigendecomposition

M-1
= V ⌃V T , ⌃ = diag(a1, . . . , aD), V V T

= I,

then

M-1
= V ⌃

-1V T , ⌃

-1
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Lecture 7- Regularized Least Squares
Lecturer: Lorenzo Rosasco Scribe: Lorenzo Rosasco

In this class we introduce a class of learning algorithms based Tikhonov regularization,

a.k.a. penalized empirical risk minimization and regularization. In particular, we focus on

the algorithm defined by the square loss.

7.1 Regularized Least Squares

We consider the following algorithm

(7.1)

A motivation for considering the above scheme is to view the empirical error

1

n

nX

i=1

(yi - wTxi))
2,

as a proxy for the expected error

Z
dxdyp(x, y)(y - wTx))2.

The term wTw is a regularizer and help preventing overfitting.

The term wTw = kwk2 is called regularizer and controls the stability of the solution.

The parameter A balances the error term and the regularizer. Algorithm (7.1) is an instance

of Tikhonov regularization, also called penalized empirical risk minimization. We have im-

plicitly chosen the space of possible solution, called the hypotheses space, to be the space of

linear functions, that is

H = {f : RD ! R : 9w 2 RD
such that f(x) = xTw, 8x 2 RD},

so that finding a function fw reduces to finding a vector w. As we will see in the following,

this seemingly simple example will be the basis for much more complicated solutions.

7.2 Computations

In this case it is convenient to introduce the n times D matrix Xn, where the rows are the

input points, and the n by 1 vector Yn where the entries are the corresponding outputs.

With this notation

1

n

nX

i=1

(yi - wTxi))
2
=

1

n
kYn -Xnwk2.
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• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then
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The ratio �D/�1 is called the condition number of M .
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When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering
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CHAPTER 11

Variable Selection

In many practical situations beyond predictions it is important to obtain interpretable results. Inter-
pretability is often determined by detecting which factors have determined our prediction. We look at
this question from the perspective of variable selection.

Consider a linear model

(11.1)

Here we can think of the components xjof an input of specific measurements: pixel values in the case
of images, dictionary words counting in the case of texts, etc. Given a training set the goal of variable
selection is to detect which variables are important for prediction. The key assumption is that the best
possible prediction rule is sparse, that is only few of the coefficients in (11.1) are different from zero.

11.1. Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the pos-
sible subset of variables. More precisely we could begin by considering only the training set where we
retain only the first variable of each input points. Then the one where we retain only the second, and so
on and so forth. Next, we could pass to consider training set with pairs of variables, then triplet etc. For
each training set one would solve the learning problem and eventually end selecting the variables for
which the corresponding training set achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already for rela-
tively small D. If we consider the square loss, it can be shown that the corresponding problem could be
written as

(11.2) min

w2RD

1

n

nX

i=1

`(yi, fw(xi)) + �kwk
0

,

where kwk
0

= |{j | wj 6= 0}| is called the `
0

norm and counts the number of non zero components
in w. In the following we focus on the least squares loss and consider different approaches to find
approximate solution to the above problem, namely greedy methods and convex relaxation.

11.2. Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate solution to problem (11.2) This class
of approaches to variable selection generally encompasses the following steps:

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,
(3) update the index set to include the index of such variable,
(4) update/compute coefficient vector,
(5) update residual.

The simplest such procedure is called forward stage-wise regression in statistics and matching pursuit
(MP) in signal processing. To describe the procedure we need some notation. Let Xn be the n by D data
matrix and Xj 2 Rn, j = 1, . . . , D be the columns of Xn. Let Yn 2 Rn be the output vector. Let r, w, I
denote the residual, the coefficient vector, an index set, respectively.

The MP algorithm starts by initializing the residual r 2 Rn, the coefficient vector w 2 RD, and the
index set I ✓ {1, . . . , D},

r
0

= Yn, , w
0

= 0, I
0

= ;.

29

� �

n
1 X 

T T
min (yi - w xi))

2 
+ Aw w, A > 0. 

w2RD n 
i=1 

Statistics? 

(Xn
T Xn + gnI)w = Xn

T Yn 

another story that shall be told another time  
(Stein ’56, James and  Stein ’61)  

n
1 X 

T T
min (yi - w xi))

2 
+ Aw w, A > 0. 

w2RD n 
i=1 

Dv

fw(x) = w T x =
X 

wj xj . 
X

(wj )2 

i=1 j=1 

Shrinkage - Stein Effect- Admissible Estimator  26



2.3 Least Squares and Nearest Neighbors 15

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

15-Nearest Neighbor Classifier 
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A direct computation shows that the gradient with respect to w of the empirical risk and

the regularizer are respectively

2

n
XT

n (Yn Xnw), and, 2w.

Then, setting the gradient to zero, we have that the solution of regularized least squares

solves the linear system

.

Several comments are in order. First, several methods can be used to solve the above linear

systems, Choleski decomposition being the method of choice, since the matrix XT
nXn + gI

is symmetric and positive definite. The complexity of the method is essentially O(nd2)
for training and O(d) for testing. The parameter g controls the invertibility of the matrix

(XT
nXn + gnI).

7.3 Interlude: Linear Systems

Consider the problem

Ma = b,

where M is a D by D matrix and a, b vectors in RD
. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is

a = M�1b.

• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then

M�1
= diag(1/�1, . . . , 1/�D), (M + gI)�1

= diag(1/(�1 + g), . . . , 1/(�D + g)

• If M is symmetric and positive definite, then considering the eigendecomposition

M�1
= V ⌃V T , ⌃ = diag(�1, . . . , �D), V V T

= I,

then

M�1
= V ⌃

�1V T , ⌃

�1
= diag(1/�1, . . . , 1/�D),

and

(M + gI)�1
= V ⌃� = V T , ⌃� = diag(1/(�1 + g), . . . , 1/(�D + g)

The ratio �D/�1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering

7-2

� �

T
n  
˜ ˜ Xn + �nY )w = X(Xn

T Xn + gnI)w = Xn
T Yn (X̃ 7! TYnn  

What About Computational Complexity?  
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. We are interested in determing a

satisfying the above equation given M, b. If M is invertible, the solution to the problem is
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• If M is a diagonal M = diag(�1, . . . , �D) where �i 2 (0,1) for all i = 1, . . . , D, then

M�1
= diag(1/�1, . . . , 1/�D), (M + gI)�1
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then
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and
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= V ⌃� = V T , ⌃� = diag(1/(�1 + g), . . . , 1/(�D + g)

The ratio �D/�1 is called the condition number of M .

7.4 Dealing with an O↵set

When considering linear models, especially in relatively low dimensional spaces, it is inter-

esting to consider an o↵set, that is wTx+ b. We shall ask the question of how to estimate b
from data. A simple idea is to simply augment the dimension of the input space, considering
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FIGURE 1. A pictorial representation of the potential effect of considering a feature map
in a simple two dimensional example.

where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) ,

so that we have,

w = XT
n (XnX

T
n + �nI)�1Yn| {z }

c

=

nX

i=1

xT
i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
(XT

n Xn + �nI)�1XT
n = V (⌃

2

+ �)�1

⌃UT

and
XT

n (XnX
T
n + �nI)�1

= V ⌃(⌃

2

+ �)�1UT .

6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)

d,
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6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)

d,

� �

  

T
n  
˜ ˜ Xn + �nY )w = X(Xn

T Xn + gnI)w = Xn
T Yn (X̃ 7! TYnn  

What About Computational Complexity?  

2O(p3) +O(p n)  

What if p is much larger than n?  

(X Tn Xn + �nI)�1X Tn  = X Tn (XnX Tn + �nI)�1  

w = X Tn (XnX | 
T
n + �nI)�1Yn  

c 
{z }  

nX 
= x  Ti ci.  

i=1  
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where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) ,

so that we have,

w = XT
n (XnX

T
n + �nI)�1Yn| {z }
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=

nX

i=1

xT
i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
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6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)
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where x
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, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) (XT
n Xn + �nI)�1XT

n = XT
n (XnX

T
n + �nI)�1,

so that we have,

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
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6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)

d,

(X Tn Xn + �nI)�1X Tn  = X Tn (XnX Tn + �nI)�1  

X 
= x  

n

w = X Tn (XnX| 
T
n + �nI)�1Yn {z } 

c 

T
i ci.  

i=1  

3 (O) + p n) 
O(n3) +O(pn2) 

Computational Complexity:  2 O(p 
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where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) ,

so that we have,

w = XT
n (XnX

T
n + �nI)�1Yn| {z }

c

=

nX

i=1

xT
i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
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⌃UT

and
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6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)
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where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) (XT
n Xn + �nI)�1XT

n = XT
n (XnX

T
n + �nI)�1,

so that we have,

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
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n = V (⌃
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⌃UT

and
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2

+ �)�1UT .

6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)
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where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) (XT
n Xn + �nI)�1XT

n = XT
n (XnX

T
n + �nI)�1,

so that we have,

w = XT
n (XnX

T
n + �nI)�1Yn| {z }

c

=

nX

i=1

xT
i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
(XT

n Xn + �nI)�1XT
n = V (⌃
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⌃UT

and
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n (XnX
T
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6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wTx =

Pn
i=1

xT
i xci, becomes

(6.4) ˆf(x) =
nX

i=1

K(xi, x)ci.

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:
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where the last two kernels have a tuning parameter, the degree and Gaussian width, respectively.
A positive definite kernel is often called a reproducing kernel and is a key concept in the theory of

reproducing kernel Hilbert spaces.
We end noting that there are some basic operations that can be used to build new kernels. In partic-

ular it is easy to see that, if K
1

,K
2

are reproducing kernels then K
1

+K
2

is also a kernel.

(X Tn Xn + �nI)�1X Tn  = X Tn (XnX Tn + �nI)�1  

w = X Tn (XnX| 
T
n + �nI)�1Yn {z } 

c 

X 
= x  

n
T
i ci.  

i=1  

n n

T TKernels 
w =

X 
x

i

c

i ) f(x) = x w =
X 

x x

i ci  
j=1 j=1 

| {z }
K(x,xi) 

(Kn + �nI)�1 
c = Yn, (Kn)i,j = K(xi, xj ) 

T 0• the linear kernel K(x, x0
) = x x , 

T d• the polynomial kernel K(x, x0
) = (x x0 

+ 1) , 
0k2 

� kx�x 
2�2• the Gaussian kernel K(x, x0

) = e , 
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2.3 Least Squares and Nearest Neighbors 15

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

15-Nearest Neighbor Classifier 
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12 6. FEATURE, KERNELS AND REPRESENTER THEOREM

FIGURE 1. A pictorial representation of the potential effect of considering a feature map
in a simple two dimensional example.

where x
1

, . . . , xn are the inputs in the training set and c = (c
1

, . . . , cn) a set of coefficients. The above
result is an instance of the so called representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting that the following equality holds,

(6.3) (XT
n Xn + �nI)�1XT

n = XT
n (XnX

T
n + �nI)�1,

so that we have,

w = XT
n (XnX

T
n + �nI)�1Yn| {z }

c

=

nX

i=1

xT
i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn = U⌃V T . Indeed we have XT
n =

V ⌃UT so that
(XT

n Xn + �nI)�1XT
n = V (⌃

2

+ �)�1

⌃UT

and
XT

n (XnX
T
n + �nI)�1

= V ⌃(⌃

2

+ �)�1UT .

6.2.2. Representer Theorem Implications. Using Equation (7.2) it possible to show how the vector
c of coefficients can computed considering different loss functions. In particular, for the square loss the
vector of coefficients satisfies the following linear system

(Kn + �nI)c = Yn.

where Kn is the n by n matrix with entries (Kn)i,j = xT
i xj . The matrix Kn is called the kernel matrix and

is symmetric and positive semi-definite.

6.3. Kernels

One of the main advantages of using the representer theorem is that the solution of the problem
depends on the input points only through inner products xTx0. Kernel methods can be seen as replacing
the inner product with a more general function K(x, x0

). In this case, the representer theorem (7.2), that
is fw(x) = wT

=

Pn
i=1

xT
i ci, becomes

(6.4)

and we can promptly derive kernel versions of the Regularization Networks induced by different loss
functions.

The function K is often called a kernel and to be admissible it should behave like an inner product.
More precisely it should be: 1) symmetric, and 2) positive definite, that is the kernel matrix Kn should
be positive semi-definite for any set of n input points. While the symmetry property is typically easy to
check, positive semi definiteness is trickier. Popular examples of positive definite kernels include:

• the linear kernel K(x, x0
) = xTx0,

• the polynomial kernel K(x, x0
) = (xTx0

+ 1)

d,

n

fˆ(x) =
X 

K(xi, x)ci. 
i=1 

things I won’t tell you about 

•Reproducing Kernel Hilbert Spaces 
•Gaussian Processes 
•Integral Equations 
•Sampling Theory/Inverse Problems 

•Loss functions- SVM, Logistic… 
•Multi - task, labels, outputs, classes 
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End of PART II  
•Regularization I: Linear Least Squares
•Regularization II: Kernel Least Squares 

Regularized Least Squares - Dictionaries - Kernels 
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PART III  
•a) Variable Selection: OMP
•b) Dimensionality Reduction: PCA 

GOAL: To introduce methods that allow to learn interpretable models 
from  data 
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X 
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fw(x) = w x = x w

j=1 

Which variables are important for prediction?  

or  
Torture the data until they confess  

Sparsity: only some of the coefficients are non zero  
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ISML-II: Machine Learning Spring 2014

Lecture 20- Variables Selection

Lecturer: Lorenzo Rosasco

In many practical situations beyond predictions it is important to obtain interpretable
results. Interpretability is often determined by detecting which factors have determined our
prediction. We look at this question from the perspective of variable selection.

Consider a linear model

fw(x) = w

T
x =

vX

i=1

w

j
x

j
. (20.1)

Here we can think of the components x

jof an input of specific measurements: pixel values
in the case of images, dictionary words counting in the case of texts, etc. Given a training
set the goal of variable selection is to detect which variables are important for prediction.
The key assumption is that the best possible prediction rule is sparse, that is only few of the
coe�cients in (20.1) are di↵erent from zero.

20.1 Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the
possible subset of variables. More precisely we could begin by considering only the training
set where we retain only the first variable of each input points. Then the one where we
retain only the second, and so on and so forth. Next, we could pass to consider training set
with pairs of variables, then triplet etc. For each training set one would solve the learning
problem and eventually end selecting the variables for which the corresponding training set
achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already
for relatively small D. If we consider the square loss, it can be shown that the corresponding
problem could be written as

(20.2)

where
kwk

0

= |{j | wj 6= 0}|

is called the `

0

norm and counts the number of non zero components in w. In the following
we focus on the least squares loss and consider di↵erent approaches to find approximate
solution to the above problem, namely greedy methods and convex relaxation.

20-1

Brute Force Approach  

check all individual variables, then all couple, triplets…..  

1 n

min 
X

(yi � fw(xi))
2 + �kwk

0

, 
w2RD 

n 
i=1 

jkwk0 = |{j | w = 06 }| 
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CHAPTER 11

Variable Selection

In many practical situations beyond predictions it is important to obtain interpretable results. Inter-
pretability is often determined by detecting which factors have determined our prediction. We look at
this question from the perspective of variable selection.

Consider a linear model

(11.1) fw(x) = wTx =

vX

i=1

wjxj .

Here we can think of the components xjof an input of specific measurements: pixel values in the case
of images, dictionary words counting in the case of texts, etc. Given a training set the goal of variable
selection is to detect which variables are important for prediction. The key assumption is that the best
possible prediction rule is sparse, that is only few of the coefficients in (11.1) are different from zero.

11.1. Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the pos-
sible subset of variables. More precisely we could begin by considering only the training set where we
retain only the first variable of each input points. Then the one where we retain only the second, and so
on and so forth. Next, we could pass to consider training set with pairs of variables, then triplet etc. For
each training set one would solve the learning problem and eventually end selecting the variables for
which the corresponding training set achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already for rela-
tively small D. If we consider the square loss, it can be shown that the corresponding problem could be
written as

(11.2) min

w2RD

1

n

nX

i=1

`(yi, fw(xi)) + �kwk
0

,

where kwk
0

= |{j | wj 6= 0}| is called the `
0

norm and counts the number of non zero components
in w. In the following we focus on the least squares loss and consider different approaches to find
approximate solution to the above problem, namely greedy methods and convex relaxation.

11.2. Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate solution to problem (11.2) This class
of approaches to variable selection generally encompasses the following steps:

The simplest such procedure is called forward stage-wise regression in statistics and matching pursuit
(MP) in signal processing. To describe the procedure we need some notation. Let Xn be the n by D data
matrix and Xj 2 Rn, j = 1, . . . , D be the columns of Xn. Let Yn 2 Rn be the output vector. Let r, w, I
denote the residual, the coefficient vector, an index set, respectively.

The MP algorithm starts by initializing the residual r 2 Rn, the coefficient vector w 2 RD, and the
index set I ✓ {1, . . . , D},

r
0

= Yn, , w
0

= 0, I
0

= ;.

29

Greedy approaches/Matching Pursuit  

X1 Yn 

X2 
r1 

(1) initialize the residual, the coefficient vector, and the index set,  
(2) find the variable most correlated with the residual, 
(3) update the index set to include the index of such variable, 
(4) update/compute coefficient vector, 
(5) update residual. 
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30 11. VARIABLE SELECTION

The following procedure is then iterated . The variable most correlated with the
residual is given by

k = arg max

j=1,...,D
aj , aj =

(rTi 1

Xj
)

2

kXjk2 ,

where we note that

vj =
rTi 1

Xj

kXjk2 = argmin

v2R
kri 1

-Xjvk2, kri 1

-Xjvjk2 = kri 1

k2 - aj

The selection rule has then two interpretations. We select the variable, such that the projection on the
output on the corresponding column is larger, or, equivalently, we select the variable such that the
corresponding column best explains the the output vector in a least squares sense.

Then, index set is updated as Ii = Ii 1

[ {k}, and the coefficients vector is given by

(11.3) wi = wi 1

+ wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component different from zero. Finally,
the residual is updated

ri = ri 1

-Xwk.

A variant of the above procedure, called Orthogonal Matching Pursuit, is also often considered. The
corresponding iteration is analogous to that of MP but the coefficient computation (11.3) is replaced by

wi = arg min

w2RD

kYn -XnMI
i

wk2,

where the D by D matrix MI is such that (MIw)j = wj if j 2 I and (MIw)j = 0 otherwise. Moreover,
the residual update is replaced by

ri = Yn -Xnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (11.2) is based on a convex
relaxation. Namely, the `

0

norm is replaced by the `
1

norm,

kwk
1

=

DX

j=1

|wj |,

so that, in the case of least squares, problem (11.2) is replaced by

(11.4) min

w2RD

1

n

nX

i=1

(yi - fw(xi))
2

+ �kwk
1

.

The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In The objective
function defining the corresponding minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A simple yet powerful procedure to
compute a solution is based on the so called iterative soft thresholding algorithm (ISTA). The latter is
an iterative procedure where, at each iteration, a non linear soft thresholding operator is applied to a
gradient step. More precisely, ISTA is defined by the following iteration

w
0

= 0, wi = S��(wi 1

- 2�

n
XT

n (Yn -Xnwi 1

)), i = 1, . . . , Tmax

which should be run until a convergence criterion is met, e.g. kwi -wi 1

k  ✏, for some precision ✏, or a
prescribed maximum number of iteration Tmax is reached. To ensure convergence we should choose the
step-size � =

n
2kXT

n

X
n

k Note that the argument of the soft thresholding operator corresponds to a step
of gradient descent. Indeed,

2

n
XT

n (Yn -Xnwi 1

)

The soft thresholding operator acts component wise on a vector w, so that

S↵(u) = ||u|- ↵|
+

u

|u| .

The above expression shows that the coefficients of the solution of problem (11.2) as computed by ISTA
can be exactly zero, This can be contrasted with Tikhonov regularization where this is hardly the case.
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30 11. VARIABLE SELECTION

The following procedure is then iterated for i = 1, . . . , T � 1. The variable most correlated with the
residual is given by

where we note that

vj =
rTi 1

Xj

kXjk2 = argmin

v2R
kri 1

�Xjvk2, kri 1

�Xjvjk2 = kri 1

k2 � aj

The selection rule has then two interpretations. We select the variable, such that the projection on the
output on the corresponding column is larger, or, equivalently, we select the variable such that the
corresponding column best explains the the output vector in a least squares sense.

Then, index set is updated as Ii = Ii 1

[ {k}, and the coefficients vector is given by

(11.3) wi = wi 1

+ wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component different from zero. Finally,
the residual is updated

ri = ri 1

�Xwk.

A variant of the above procedure, called Orthogonal Matching Pursuit, is also often considered. The
corresponding iteration is analogous to that of MP but the coefficient computation (11.3) is replaced by

wi = arg min

w2RD

kYn �XnMI
i

wk2,

where the D by D matrix MI is such that (MIw)j = wj if j 2 I and (MIw)j = 0 otherwise. Moreover,
the residual update is replaced by

ri = Yn �Xnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (11.2) is based on a convex
relaxation. Namely, the `

0

norm is replaced by the `
1

norm,

kwk
1

=

DX

j=1

|wj |,

so that, in the case of least squares, problem (11.2) is replaced by

(11.4) min

w2RD

1

n

nX

i=1

(yi � fw(xi))
2

+ �kwk
1

.

The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In The objective
function defining the corresponding minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A simple yet powerful procedure to
compute a solution is based on the so called iterative soft thresholding algorithm (ISTA). The latter is
an iterative procedure where, at each iteration, a non linear soft thresholding operator is applied to a
gradient step. More precisely, ISTA is defined by the following iteration

w
0

= 0, wi = S��(wi 1

� 2�

n
XT

n (Yn �Xnwi 1

)), i = 1, . . . , Tmax

which should be run until a convergence criterion is met, e.g. kwi �wi 1

k  ✏, for some precision ✏, or a
prescribed maximum number of iteration Tmax is reached. To ensure convergence we should choose the
step-size � =

n
2kXT

n

X
n

k Note that the argument of the soft thresholding operator corresponds to a step
of gradient descent. Indeed,

2

n
XT

n (Yn �Xnwi 1

)

The soft thresholding operator acts component wise on a vector w, so that

S↵(u) = ||u|� ↵|
+

u

|u| .

The above expression shows that the coefficients of the solution of problem (11.2) as computed by ISTA
can be exactly zero, This can be contrasted with Tikhonov regularization where this is hardly the case.
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CHAPTER 11

Variable Selection

In many practical situations beyond predictions it is important to obtain interpretable results. Inter-
pretability is often determined by detecting which factors have determined our prediction. We look at
this question from the perspective of variable selection.

Consider a linear model

(11.1) fw(x) = wTx =

vX

i=1

wjxj .

Here we can think of the components xjof an input of specific measurements: pixel values in the case
of images, dictionary words counting in the case of texts, etc. Given a training set the goal of variable
selection is to detect which variables are important for prediction. The key assumption is that the best
possible prediction rule is sparse, that is only few of the coefficients in (11.1) are different from zero.

11.1. Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the pos-
sible subset of variables. More precisely we could begin by considering only the training set where we
retain only the first variable of each input points. Then the one where we retain only the second, and so
on and so forth. Next, we could pass to consider training set with pairs of variables, then triplet etc. For
each training set one would solve the learning problem and eventually end selecting the variables for
which the corresponding training set achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already for rela-
tively small D. If we consider the square loss, it can be shown that the corresponding problem could be
written as

(11.2) min

w2RD

1

n

nX

i=1

`(yi, fw(xi)) + �kwk
0

,

where kwk
0

= |{j | wj 6= 0}| is called the `
0

norm and counts the number of non zero components
in w. In the following we focus on the least squares loss and consider different approaches to find
approximate solution to the above problem, namely greedy methods and convex relaxation.

11.2. Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate solution to problem (11.2) This class
of approaches to variable selection generally encompasses the following steps:

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,
(3) update the index set to include the index of such variable,
(4) update/compute coefficient vector,
(5) update residual.

The simplest such procedure is called forward stage-wise regression in statistics and matching pursuit
(MP) in signal processing. To describe the procedure we need some notation. Let Xn be the n by D data
matrix and Xj 2 Rn, j = 1, . . . , D be the columns of Xn. Let Yn 2 Rn be the output vector. Let r, w, I
denote the residual, the coefficient vector, an index set, respectively.

The MP algorithm starts by initializing the residual r 2 Rn, the coefficient vector w 2 RD, and the
index set I ✓ {1, . . . , D},

29
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30 11. VARIABLE SELECTION

The following procedure is then iterated for i = 1, . . . , T � 1. The variable most correlated with the
residual is given by

k = arg max

j=1,...,D
aj , aj =

(rTi�1

Xj
)

2

kXjk2 ,

where we note that

The selection rule has then two interpretations. We select the variable, such that the projection on the
output on the corresponding column is larger, or, equivalently, we select the variable such that the
corresponding column best explains the the output vector in a least squares sense.

Then, index set is updated as Ii = Ii�1

[ {k}, and the coefficients vector is given by

(11.3) wi = wi�1

+ wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component different from zero. Finally,
the residual is updated

ri = ri�1

�Xwk.

A variant of the above procedure, called Orthogonal Matching Pursuit, is also often considered. The
corresponding iteration is analogous to that of MP but the coefficient computation (11.3) is replaced by

wi = arg min

w2RD

kYn �XnMI
i

wk2,

where the D by D matrix MI is such that (MIw)j = wj if j 2 I and (MIw)j = 0 otherwise. Moreover,
the residual update is replaced by

ri = Yn �Xnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (11.2) is based on a convex
relaxation. Namely, the `

0

norm is replaced by the `
1

norm,

kwk
1

=

DX

j=1

|wj |,

so that, in the case of least squares, problem (11.2) is replaced by

(11.4) min

w2RD

1

n

nX

i=1

(yi � fw(xi))
2

+ �kwk
1

.

The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In The objective
function defining the corresponding minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A simple yet powerful procedure to
compute a solution is based on the so called iterative soft thresholding algorithm (ISTA). The latter is
an iterative procedure where, at each iteration, a non linear soft thresholding operator is applied to a
gradient step. More precisely, ISTA is defined by the following iteration

w
0

= 0, wi = S��(wi�1

� 2�

n
XT

n (Yn �Xnwi�1

)), i = 1, . . . , Tmax

which should be run until a convergence criterion is met, e.g. kwi �wi�1

k  ✏, for some precision ✏, or a
prescribed maximum number of iteration Tmax is reached. To ensure convergence we should choose the
step-size � =

n
2kXT

n

X
n

k Note that the argument of the soft thresholding operator corresponds to a step
of gradient descent. Indeed,

2

n
XT

n (Yn �Xnwi�1

)

The soft thresholding operator acts component wise on a vector w, so that

S↵(u) = ||u|� ↵|
+

u

|u| .

The above expression shows that the coefficients of the solution of problem (11.2) as computed by ISTA
can be exactly zero, This can be contrasted with Tikhonov regularization where this is hardly the case.
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The following procedure is then iterated for i = 1, . . . , T T 1. The variable most correlated with the
residual is given by

k = arg max

j=1,...,D
aj , aj =

(rTi 1

Xj
)

2

kXjk2 ,

where we note that

vj =
rTi 1

Xj

kXjk2 = argmin

v2R
kri 1

TXjvk2, kri 1

TXjvjk2 = kri 1

k2 T aj

The selection rule has then two interpretations. We select the variable, such that the projection on the
output on the corresponding column is larger, or, equivalently, we select the variable such that the
corresponding column best the the vector in a least squares sense.

Then, index set is updated as , and the coefficients vector is given by

(11.3) wi = wi 1

+ wk, wkk = vkek

where ek is the element of the canonical basis in RDwith k-th component different from zero. Finally,
the residual is updated

ri = ri 1

TXwk.

A variant of the above procedure, called Orthogonal Matching Pursuit, is also often considered. The
corresponding iteration is analogous to that of MP but the coefficient computation (11.3) is replaced by

wi = arg min

w2RD

kYn TXnMI
i

wk2,

where the D by D matrix MI is such that (MIw)j = wj if j 2 I and (MIw)j = 0 otherwise. Moreover,
the residual update is replaced by

ri = Yn TXnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to problem (11.2) is based on a convex
relaxation. Namely, the `
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norm is replaced by the `
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norm,
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so that, in the case of least squares, problem (11.2) is replaced by
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The above problem is called LASSO in statistics and Basis Pursuit in signal processing. In The objective
function defining the corresponding minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A simple yet powerful procedure to
compute a solution is based on the so called iterative soft thresholding algorithm (ISTA). The latter is
an iterative procedure where, at each iteration, a non linear soft thresholding operator is applied to a
gradient step. More precisely, ISTA is defined by the following iteration
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0
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T 2�

n
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n (Yn TXnwi 1
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which should be run until a convergence criterion is met, e.g. kwi Twi 1

k  ✏, for some precision ✏, or a
prescribed maximum number of iteration Tmax is reached. To ensure convergence we should choose the
step-size � =

n
2kXT

n

X
n

k Note that the argument of the soft thresholding operator corresponds to a step
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2

n
XT

n (Yn TXnwi 1

)

The soft thresholding operator acts component wise on a vector w, so that

S↵(u) = ||u|T ↵|
+

u

|u| .

The above expression shows that the coefficients of the solution of problem (11.2) as computed by ISTA
can be exactly zero, This can be contrasted with Tikhonov regularization where this is hardly the case.
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Matching Pursuit r
0 = Yn, , w

0 = 0, I
0 = ;. 

(Mallat Zhang ’93) 

for i = 1, . . . , T  - 1 
T 

(r j 
)

2 
k = arg max aj , aj = i 1

X
, * 

j=1,...,D kXj k2 

explains output 
Ii = Ii 1 [ {k} 

[ { } 

wi = wi=1 + wk, wkk = vkek 

ri = ri�1 � Xwk . 

end 

Tri�1

Xj 
j j k2* v = = arg min kri�1 � Xj vk2 , kri�1 � Xj v = kri�1

k2 � ajkXj k2 v2R 43
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Lecture 20- Variables Selection

Lecturer: Lorenzo Rosasco

In many practical situations beyond predictions it is important to obtain interpretable
results. Interpretability is often determined by detecting which factors have determined our
prediction. We look at this question from the perspective of variable selection.

Consider a linear model

fw(x) = w

T
x =

vX

i=1

w

j
x

j
. (20.1)

Here we can think of the components x

jof an input of specific measurements: pixel values
in the case of images, dictionary words counting in the case of texts, etc. Given a training
set the goal of variable selection is to detect which variables are important for prediction.
The key assumption is that the best possible prediction rule is sparse, that is only few of the
coe�cients in (20.1) are di↵erent from zero.

20.1 Subset Selection

A brute force approach would be to consider all the training sets obtained considering all the
possible subset of variables. More precisely we could begin by considering only the training
set where we retain only the first variable of each input points. Then the one where we
retain only the second, and so on and so forth. Next, we could pass to consider training set
with pairs of variables, then triplet etc. For each training set one would solve the learning
problem and eventually end selecting the variables for which the corresponding training set
achieve the best performance.

The approach described has an exponential complexity and becomes unfeasible already
for relatively small D. If we consider the square loss, it can be shown that the corresponding
problem could be written as

(20.2)

where
kwk

0

= |{j | wj 6= 0}|

is called the `

0

norm and counts the number of non zero components in w. In the following
we focus on the least squares loss and consider di↵erent approaches to find approximate
solution to the above problem, namely greedy methods and convex relaxation.
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Basis Pursuit/Lasso 
(Chen Donoho Saunders ~95, Tibshirani ‘96)  

D

j=1n
1 X

min (yi � fw(xi))
2 + �kwk

0

, 
w2RD 

n 

kwk1 = 
X 

|wj | 

i=1 

Problem is now convex and can be solved using convex optimization, 
in particular so called proximal methods 
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things I won’t tell you about 

•Solving underdetermined systems 
•Sampling theory 
•Compressed Sensing 
•Structured Sparsity 
•From vector to matrices- from sparsity to low rank  
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End of PART III a) 
•a) Variable Selection: OMP
•b) Dimensionality Reduction: PCA 

Interpretability -  Sparsity -  Greedy & Convex Relaxation Approaches  
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PART III b) 
•a) Variable Selection: OMP
•b) Dimensionality Reduction: PCA 

GOAL: To introduce methods that allow to reduce data dimensionality
in absence of labels, namely unsupervised learning 
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Dimensionality Reduction for Data Visualization  
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Lecture 19- Dimensionality Reduction

Lecturer: Lorenzo Rosasco

In many practical applications it is of interest to reduce the dimensionality of the data.

In particular, this is useful for data visualization, or for investigating the ”e↵ective” dimen-

sionality of the data. This problem is often referred to as dimensionality reduction and can

be seen as the problem of defining a map

according to some suitable criterion.

19.1 PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven

procedure that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality

reduction defined by a linear map M . PCA can be derived from several prospective and here

we give a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested into finding the single

most relevant dimension according to some suitable criterion. Recall that, if w 2 RD
with

kwk = 1, then the (orthogonal) projection of a point x on w is given by (wTx)w. Consider

the problem of finding the direction p which allows the best possible average reconstruction

of the training set, that is the solution of the problem

min

w2SD�1

1

n

nX

i=1

kxi � (wTxi)wk2, (19.1)

where SD�1
= {w 2 RD | kwk = 1} is the sphere in D dimensions. The norm kxi�(wTxi)wk2

measures how much we lose by projecting x along the direction w, and the solution p to

problem (19.1) is called the first principal component of the data. A direct computation

shows that kxi � (wTxi)wk2 = kxik � (wTxi)
2
, so that problem (19.1) is equivalent to

max

w2SD�1

1

n

nX

i=1

(wTxi)
2. (19.2)

This latter observation is useful for two di↵erent reasons that the we discuss in the following.

19.2 PCA and Maximum Variance

If the data are centered, that is x̄ =

1
nxi = 0, problem (19.2) has the following interpretation:

we a look for the direction along which the data have (on average) maximum variance.
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Lecture 19- Dimensionality Reduction

Lecturer: Lorenzo Rosasco
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Indeed, we can interpret the term (wTx)2 has the variance of x in the direction w. If the

data are not centered, to keep this interpretation we should replace problem (19.2) with

(19.3)

which corresponds to the original problem on the centered data xc
= x� x̄. In the terms of

problem (19.1) it is easy to see that this corresponds to considering

min

w,b2SD�1

1

n

nX

i=1

kxi � ((wT
(xi � b))w + b)k2. (19.4)

where ((wT
(xi � b))w+ b is an a�ne transformation (rather than an orthogonal projection).

19.3 PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (19.2) as an eigenvalue problem.

Indeed, using the symmetry of the inner product we have

1

n

nX

i=1

(wTxi)
2
=

1

n

nX

i=1

wTxiw
Txi =

1

n

nX

i=1

wTxix
T
i w = wT

(

1

n

nX

i=1

xix
T
i )w

so that problem (19.2) can be written as

max

w2SD�1
wTCnw, Cn =

1

n

nX

i=1

xix
T
i . (19.5)

We need two observations. First, in matrix notation Cn =

1
n

Pn
i=1X

T
nXn and it is easy to

see that Cn is symmetric and positive semi-definite. If the data are centered the matrix Cn

is the so called covariance matrix. Clearly the objective function in (19.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = �u then

uTCnu
uTu = �, since the eigenvector u normalized. In fact, it is possible to show that the

Rayleigh quotient achieves its maximum at a vector which corresponds to the maximum

eigenvalue of Cn (the proof of this latter fact uses basic results in linear programming).

Then computing the first principal component of the data reduced to computing the biggest

eigenvalue of the covariance and the corresponding eigenvector.

19.4 Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than

one principle component. The idea is simply to iterate the above reasoning to describe the

19-2

1 n

min 
X 

kxi � (w T xi)wk2 , 
w2SD�1 n 

i=1 

Statistics? 

) p pa 
T 2 Tkxi � (w xi)wk = kxik � (w xi)

2 
, 

1 n

max 
X

(w T xi)
2 .=) 

w2SD�1 n 
i=1 

1 n

=) max 
X

(w T 
(xi � x̄))2 , 

w2SD�1 n 
i=1 
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Lecture 19- Dimensionality Reduction

Lecturer: Lorenzo Rosasco
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we a look for the direction along which the data have (on average) maximum variance.
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In many practical applications it is of interest to reduce the dimensionality of the data.

In particular, this is useful for data visualization, or for investigating the ”e↵ective” dimen-

sionality of the data. This problem is often referred to as dimensionality reduction and can

be seen as the problem of defining a map

M : X = RD ! Rk, k ⌧ D,

according to some suitable criterion.

19.1 PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven

procedure that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality

reduction defined by a linear map M . PCA can be derived from several prospective and here

we give a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested into finding the single

most relevant dimension according to some suitable criterion. Recall that, if w 2 RD
with

kwk = 1, then the (orthogonal) projection of a point x on w is given by (wTx)w. Consider

the problem of finding the direction p which allows the best possible average reconstruction

of the training set, that is the solution of the problem

min

w2SD�1

1

n

nX

i=1

kxi � (wTxi)wk2, (19.1)

where SD�1
= {w 2 RD | kwk = 1} is the sphere in D dimensions. The norm kxi�(wTxi)wk2

measures how much we lose by projecting x along the direction w, and the solution p to

problem (19.1) is called the first principal component of the data. A direct computation

shows that kxi � (wTxi)wk2 = kxik � (wTxi)
2
, so that problem (19.1) is equivalent to

(19.2)

This latter observation is useful for two di↵erent reasons that the we discuss in the following.

19.2 PCA and Maximum Variance

If the data are centered, that is x̄ =

1
nxi = 0, problem (19.2) has the following interpretation:

we a look for the direction along which the data have (on average) maximum variance.
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Indeed, we can interpret the term (wTx)2 has the variance of x in the direction w. If the

data are not centered, to keep this interpretation we should replace problem (19.2) with

max

w2SD�1

1

n

nX

i=1

(wT
(xi � x̄))2, (19.3)

which corresponds to the original problem on the centered data xc
= x� x̄. In the terms of

problem (19.1) it is easy to see that this corresponds to considering

min

w,b2SD�1

1

n

nX

i=1

kxi � ((wT
(xi � b))w + b)k2. (19.4)

where ((wT
(xi � b))w+ b is an a�ne transformation (rather than an orthogonal projection).

19.3 PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (19.2) as an eigenvalue problem.

Indeed, using the symmetry of the inner product we have

so that problem (19.2) can be written as

max

w2SD�1
wTCnw, Cn =

1

n

nX

i=1

xix
T
i . (19.5)

We need two observations. First, in matrix notation Cn =

1
n

Pn
i=1X

T
nXn and it is easy to

see that Cn is symmetric and positive semi-definite. If the data are centered the matrix Cn

is the so called covariance matrix. Clearly the objective function in (19.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = �u then

uTCnu
uTu = �, since the eigenvector u normalized. In fact, it is possible to show that the

Rayleigh quotient achieves its maximum at a vector which corresponds to the maximum

eigenvalue of Cn (the proof of this latter fact uses basic results in linear programming).

Then computing the first principal component of the data reduced to computing the biggest

eigenvalue of the covariance and the corresponding eigenvector.

19.4 Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than

one principle component. The idea is simply to iterate the above reasoning to describe the
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Indeed, we can interpret the term (wTx)2 has the variance of x in the direction w. If the

data are not centered, to keep this interpretation we should replace problem (19.2) with

max

w2SD�1

1

n

nX

i=1

(wT
(xi � x̄))2, (19.3)

which corresponds to the original problem on the centered data xc
= x� x̄. In the terms of

problem (19.1) it is easy to see that this corresponds to considering

min

w,b2SD�1

1

n

nX

i=1

kxi � ((wT
(xi � b))w + b)k2. (19.4)

where ((wT
(xi � b))w+ b is an a�ne transformation (rather than an orthogonal projection).

19.3 PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (19.2) as an eigenvalue problem.

Indeed, using the symmetry of the inner product we have

1

n

nX

i=1

(wTxi)
2
=

1

n

nX

i=1

wTxiw
Txi =

1

n

nX

i=1

wTxix
T
i w = wT

(

1

n

nX

i=1

xix
T
i )w

so that problem (19.2) can be written as

. (19.5)

We need two observations. First, in matrix notation Cn =

1
n

Pn
i=1X

T
nXn and it is easy to

see that Cn is symmetric and positive semi-definite. If the data are centered the matrix Cn

is the so called covariance matrix. Clearly the objective function in (19.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = �u then

uTCnu
uTu = �, since the eigenvector u normalized. In fact, it is possible to show that the

Rayleigh quotient achieves its maximum at a vector which corresponds to the maximum

eigenvalue of Cn (the proof of this latter fact uses basic results in linear programming).

Then computing the first principal component of the data reduced to computing the biggest

eigenvalue of the covariance and the corresponding eigenvector.

19.4 Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than

one principle component. The idea is simply to iterate the above reasoning to describe the
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1 n

min 
X 

kxi � (w T xi)wk2 , 
w2SD�1 n 

i=1 

Computations? 

w1 max eigenvector of Cn 
n

1 n
T 1 T

max 
X

(w xi)
2 . , max w T Cnw, Cn = 

X 
xixi  

w2SD�1 n w2SD�1 n 
i=1 i=1 

X X n n n n

n n n n 
i=1 i=1 i=1 i=1 

X X 
1  1  1 T xi)

2  T T  T xix Ti w = w T 
(  T  

i )w(w  =  w xiw xi =  w  xix  
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In many practical applications it is of interest to reduce the dimensionality of the data.

In particular, this is useful for data visualization, or for investigating the ”e↵ective” dimen-

sionality of the data. This problem is often referred to as dimensionality reduction and can

be seen as the problem of defining a map

according to some suitable criterion.

19.1 PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven

procedure that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality

reduction defined by a linear map M . PCA can be derived from several prospective and here

we give a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested into finding the single

most relevant dimension according to some suitable criterion. Recall that, if w 2 RD
with

kwk = 1, then the (orthogonal) projection of a point x on w is given by (wTx)w. Consider

the problem of finding the direction p which allows the best possible average reconstruction

of the training set, that is the solution of the problem

min

w2SD�1

1

n

nX

i=1

kxi � (wTxi)wk2, (19.1)

where SD�1
= {w 2 RD | kwk = 1} is the sphere in D dimensions. The norm kxi�(wTxi)wk2

measures how much we lose by projecting x along the direction w, and the solution p to

problem (19.1) is called the first principal component of the data. A direct computation

shows that kxi � (wTxi)wk2 = kxik � (wTxi)
2
, so that problem (19.1) is equivalent to

max

w2SD�1

1

n

nX

i=1

(wTxi)
2. (19.2)

This latter observation is useful for two di↵erent reasons that the we discuss in the following.

19.2 PCA and Maximum Variance

If the data are centered, that is x̄ =

1
nxi = 0, problem (19.2) has the following interpretation:

we a look for the direction along which the data have (on average) maximum variance.
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Indeed, we can interpret the term (wTx)2 has the variance of x in the direction w. If the

data are not centered, to keep this interpretation we should replace problem (19.2) with

max

w2SD�1

1

n

nX

i=1

(wT
(xi � x̄))2, (19.3)

which corresponds to the original problem on the centered data xc
= x� x̄. In the terms of

problem (19.1) it is easy to see that this corresponds to considering

min

w,b2SD�1

1

n

nX

i=1

kxi � ((wT
(xi � b))w + b)k2. (19.4)

where ((wT
(xi � b))w+ b is an a�ne transformation (rather than an orthogonal projection).

19.3 PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (19.2) as an eigenvalue problem.

Indeed, using the symmetry of the inner product we have

1

n

nX

i=1

(wTxi)
2
=

1

n

nX

i=1

wTxiw
Txi =

1

n

nX

i=1

wTxix
T
i w = wT

(

1

n

nX

i=1

xix
T
i )w

so that problem (19.2) can be written as

(19.5)

We need two observations. First, in matrix notation Cn =

1
n

Pn
i=1X

T
nXn and it is easy to

see that Cn is symmetric and positive semi-definite. If the data are centered the matrix Cn

is the so called covariance matrix. Clearly the objective function in (19.5) can be written as

wTCnw

wTw

where the latter quantity is the so called Rayleigh quotient. Note that, if Cnu = �u then

uTCnu
uTu = �, since the eigenvector u normalized. In fact, it is possible to show that the

Rayleigh quotient achieves its maximum at a vector which corresponds to the maximum

eigenvalue of Cn (the proof of this latter fact uses basic results in linear programming).

Then computing the first principal component of the data reduced to computing the biggest

eigenvalue of the covariance and the corresponding eigenvector.

19.4 Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to k > 1, that is more than

one principle component. The idea is simply to iterate the above reasoning to describe the
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Dimensionality Reduction 

M : X = RD ! Rk, k  ⌧ D, 

What about k = 2? 
… 

w2 second eigenvector of Cn 

1 n

max w T Cnw, Cn = 
X 

xixi
T . 

w2SD�1 n 
i=1w ? w1 
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In many practical applications it is of interest to reduce the dimensionality of the data.

In particular, this is useful for data visualization, or for investigating the ”e↵ective” dimen-

sionality of the data. This problem is often referred to as dimensionality reduction and can

be seen as the problem of defining a map

according to some suitable criterion.

19.1 PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction procedure. It is a data driven

procedure that given an (unsupervised) sample S = (x1, . . . , xn) derive a dimensionality

reduction defined by a linear map M . PCA can be derived from several prospective and here

we give a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested into finding the single

most relevant dimension according to some suitable criterion. Recall that, if w 2 RD
with

kwk = 1, then the (orthogonal) projection of a point x on w is given by (wTx)w. Consider

the problem of finding the direction p which allows the best possible average reconstruction

of the training set, that is the solution of the problem

min

w2SD�1

1

n

nX

i=1

kxi � (wTxi)wk2, (19.1)

where SD�1
= {w 2 RD | kwk = 1} is the sphere in D dimensions. The norm kxi�(wTxi)wk2

measures how much we lose by projecting x along the direction w, and the solution p to

problem (19.1) is called the first principal component of the data. A direct computation

shows that kxi � (wTxi)wk2 = kxik � (wTxi)
2
, so that problem (19.1) is equivalent to

max

w2SD�1

1

n

nX

i=1

(wTxi)
2. (19.2)

This latter observation is useful for two di↵erent reasons that the we discuss in the following.

19.2 PCA and Maximum Variance

If the data are centered, that is x̄ =

1
nxi = 0, problem (19.2) has the following interpretation:

we a look for the direction along which the data have (on average) maximum variance.
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M : X = RD ! Rk, k  ⌧ D,  

things I won’t tell you about 

•Random Maps: Johnson-Linderstrauss Lemma 
•Non Linear Maps: Kernel PCA, Laplacian/

Diffusion maps 
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End of PART III b) 
•a) Variable Selection: OMP
•b) Dimensionality Reduction: PCA 

Interpretability -  Sparsity -  Greedy & Convex Relaxation Approaches  
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The End  

PART IV •Matlab practical session 
Afternoon 
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