Machine Learning: a Basic Toolkit

Lorenzo Rosasco,

- Universita' di Genova
- Istituto Italiano di Tecnologia

August 2015 - BMM Summer School

Machine Learning

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

ML Desert Island Compilation

An introduction to essential Machine Learning: - Concepts
-Algorithms

PART I
 PART II
 - Local methods
 - Bias-Variance and Cross Validation
 - Regularization I: Linear Least Squares
 - Regularization II: Kernel Least Squares

PART III

- Variable Selection: OMP
- Dimensionality Reduction: PCA
- Matlab practical session

Morning

Afternoon

PART I

- Local methods
- Bias-Variance and Cross Validation

GOAL: Investigate the trade-off between stability and fitting starting from simple machine learning approaches

The goal of supervised learning is to find an underlying input-output relation

$$
f\left(x_{\text {new }}\right) \sim y
$$

given data.

The data, called training set, is a set of n input-output pairs,

$$
S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

Image of the iPhone camera removed due to copyright restrictions. Please see the video.

Image of the iPhone camera removed due to copyright restrictions. Please see the video.

170	238	85	255	221	0
68	136	17	170	119	68
221	0	238	136	0	255
119	255	85	170	136	238
238	17	221	68	119	255
85	170	119	221	17	136

$$
X_{n}=\left(\begin{array}{ccccc}
x_{1}^{1} & \cdots & \cdots & \cdots & x_{1}^{p} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{n}^{1} & \cdots & \cdots & \cdots & x_{n}^{p}
\end{array}\right)
$$

11

$$
Y_{n}=\left(\begin{array}{c} y_{1} \\ \vdots \\ y_{n} \end{array}\right)
$$
 -1

Local Methods: Nearby points have similar labels

Nearest Neighbor
Given an input \bar{x}, let

$$
i^{\prime}=\arg \min _{i=1, \ldots, n}\left\|\bar{x}-x_{i}\right\|^{2}
$$

and define the nearest neighbor (NN) estimator as

$$
\hat{f}(\bar{x})=y_{i^{\prime}} .
$$

Plot

K-Nearest Neighbors

Consider

$$
d_{\bar{x}}=\left(\left\|\bar{x}-x_{i}\right\|^{2}\right)_{i=1}^{n}
$$

the array of distances of a new point \bar{x} to the input points in the training set. Let

$$
s_{\bar{x}}
$$

be the above array sorted in increasing order and

$$
I_{\bar{x}}
$$

the corresponding vector of indices, and

$$
K_{\bar{x}}=\left\{I_{\bar{x}}^{1}, \ldots, I_{\bar{x}}^{K}\right\}
$$

be the array of the first K entries of $I_{\bar{x}}$. The K-nearest neighbor estimator (KNN) is defined as,

$$
\hat{f}(\bar{x})=\sum_{i^{\prime} \in K_{\bar{x}}} y_{i^{\prime}}
$$

Plot

Remarks:

Generalization I: closer points should count more

$$
\hat{f}(\bar{x})=\frac{\sum_{i=1}^{n} y_{i} k\left(\bar{x}, x_{i}\right)}{\sum_{i=1}^{n} k\left(\bar{x}, x_{i}\right)},
$$

$$
\text { Gaussian } \quad k\left(x^{\prime}, x\right)=e^{-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}}
$$

Parzen Windows

Generalization II: other metric/similarities

$$
X=\{0,1\}^{D} \quad d_{H}(x, \bar{x})=\frac{1}{D} \sum_{j=1}^{D} \mathbf{1}_{\left[x^{j} \neq \bar{x}^{j}\right]}
$$

There is one parameter controlling fit/stability

How do we choose it?

Is there an optimal value?

Can we compute it?

Is there an optimal value?

Ideally we would like to choose K that minimizes the expected error

$$
\mathbf{E}_{S} \mathbf{E}_{x, y}\left(y-\hat{f}_{K}(x)\right)^{2} .
$$

Next: Characterize corresponding minimization problem to uncover one of the most fundamental aspect of machine learning.

For the sake of simplicity we consider a regression model

$$
y_{i}=f_{*}\left(x_{i}\right)+\delta_{i}, \quad \mathbf{E} \delta_{I}=0, \mathbf{E} \delta_{i}^{2}=\sigma^{2} \quad i=1, \ldots, n
$$

$$
\mathbf{E}_{S} \mathbf{E}_{x, y}\left(y-\hat{f}_{K}(x)\right)^{2}=\mathbf{E}_{x} \underbrace{\mathbf{E}_{S} \mathbf{E}_{y \mid x}\left(y-\hat{f}_{K}(x)\right)^{2}}_{\varepsilon(K)}
$$

$$
\mathbf{E}_{y \mid x} \hat{f}_{K}(x)=\frac{1}{K} \sum_{\ell \in K_{x}} f_{*}\left(x_{\ell}\right)
$$

$$
\begin{gathered}
\mathbf{E}_{S} \mathbf{E}_{y \mid x}\left(f_{*}(x)-\hat{f}_{K}(x)\right)^{2}=\underbrace{\left(f_{*}(x)-\mathbf{E}_{S} \mathbf{E}_{y \mid x} \hat{f}_{K}(x)\right)^{2}}_{\text {Bias }}+\underbrace{\mathbf{E}_{S} \mathbf{E}_{y \mid x}\left(\mathbf{E}_{y \mid x} \hat{f}_{K}(x)-\hat{f}_{K}(x)\right)^{2}}_{\text {Variance }} \\
\left(f_{*}(x)+\frac{1}{K} \sum_{\ell \in K_{x}} f_{*}\left(x_{\ell}\right)\right)^{2}
\end{gathered}
$$

Bias Variance Trade-Off

$$
\left(f_{*}(x)+\frac{1}{K} \sum_{\ell \in K_{x}} f_{*}\left(x_{\ell}\right)\right)^{2}+\frac{\sigma^{2}}{K}
$$

> Not quite... $\left(f_{*}(x)+\frac{1}{K} \sum_{\ell \in K_{x}} f_{*}\left(x_{\ell}\right)\right)^{2}+\frac{\sigma^{2}}{K}$

...enter Cross Validation

Split data: train on some, tune on some other

Cross Validation Flavors

Hold-Out

Cross Validation Flavors

V-Fold, ($\mathrm{V}=\mathrm{n}$ is Leave-One-Out)

End of PART I

- Local methods
- Bias-Variance and Cross Validation

Stability - Overfitting - Bias/Variance - Cross-Validation

End of the Story?

High Dimensions and Neighborhood

tell me the length of the edge of a cube containing 1% of the volume of a cube with edge 1

Cubes and Dth-roots

Curse of dimensionality!

PART II

- Regularization I: Linear Least Squares
- Regularization II: Kernel Least Squares

GOAL: Introduce the basic (global) regularization methods with parametric and non parametric models

Going Global + Impose Smoothness

Of all the principles which can be proposed for that purpose, I think there is none more general, more exact, and more easy of application, that of which we made use in the preceding researches, and which consists of rendering the sum of squares of the errors a minimum.
(Legendre 1805)

We consider the following algorithm

$$
\left.\min _{w \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)\right)^{2}+\lambda w^{T} w, \quad \lambda \geq 0
$$

Computations?

$$
\text { Notation } \left.\quad \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)\right)^{2}=\frac{1}{n}\left\|Y_{n}-X_{n} w\right\|^{2}
$$

$-\frac{2}{n} X_{n}^{T}\left(Y_{n}-X_{n} w\right), \quad$ and, $\quad 2 w \quad$ Setting gradients...
...to zero

$$
\left(X_{n}^{T} X_{n}+\lambda n I\right) w=X_{n}^{T} Y_{n}
$$

Interlude: Linear Systems

$$
M a=b
$$

- If M is a diagonal $M=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{D}\right)$ where $\sigma_{i} \in(0, \infty)$ for all $i=1, \ldots, D$, then

$$
M^{-1}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{D}\right), \quad(M+\lambda I)^{-1}=\operatorname{diag}\left(1 /\left(\sigma_{1}+\lambda\right), \ldots, 1 /\left(\sigma_{D}+\lambda\right)\right.
$$

- If M is symmetric and positive definite, then considering the eigendecomposition

$$
M^{-1}=V \Sigma V^{T}, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{D}\right), V V^{T}=I
$$

then

$$
M^{-1}=V \Sigma^{-1} V^{T}, \quad \Sigma^{-1}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{D}\right)
$$

and

$$
(M+\lambda I)^{-1}=V \Sigma_{\lambda}=V^{T}, \quad \Sigma_{\lambda}=\operatorname{diag}\left(1 /\left(\sigma_{1}+\lambda\right), \ldots, 1 /\left(\sigma_{D}+\lambda\right)\right.
$$

$$
\left.\min _{w \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)\right)^{2}+\lambda w^{T} w, \quad \lambda \geq 0
$$

Statistics?

$$
\left(X_{n}^{T} X_{n}+\lambda n I\right) w=X_{n}^{T} Y_{n}
$$

another story that shall be told another time
(Stein '56, James and Stein '61)

$$
\begin{gathered}
\left.\min _{w \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)\right)^{2}+\lambda w^{T} w, \quad \lambda \geq 0 . \\
f_{w}(x)=w^{T} x=\sum_{i=1}^{v} w^{j} x^{j}
\end{gathered}
$$

Shrinkage - Stein Effect- Admissible Estimator

Plot

Why a linear decision rule?

Dictionaries

$$
\begin{aligned}
& x \mapsto \tilde{x}=\left(\phi_{1}(x), \ldots, \phi_{p}(x)\right) \in \mathbb{R}^{p} \\
& f(x)=w^{T} \tilde{x}=\sum_{j=1}^{p} \phi_{j}(x) w^{j} \\
& \Phi: R^{2} \rightarrow R^{3} \\
& \left(x_{1}, x_{2}\right) \mapsto\left(z_{1}, z_{2}, z_{3}\right):=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
\end{aligned}
$$

$$
\left(X_{n}^{T} X_{n}+\lambda n I\right) w=X_{n}^{T} Y_{n} \quad \mapsto \quad\left(\tilde{X}_{n}^{T} \tilde{X}_{n}+\lambda n Y\right) w=\tilde{X}_{n}^{T} Y_{n}
$$

What About Computational Complexity?

Complexity Vademecum

$M n$ by p matrix and $v, v^{\prime} p$ dimensional vectors

- $v^{T} v^{\prime} \mapsto O(p)$
- $M v^{\prime} \mapsto O(n p)$
- $M M^{T} \mapsto O\left(n^{2} p\right)$
- $\left(M M^{T}\right)^{-1} \mapsto O\left(n^{3}\right)$

$$
\left(X_{n}^{T} X_{n}+\lambda n I\right) w=X_{n}^{T} Y_{n} \quad \mapsto \quad\left(\tilde{X}_{n}^{T} \tilde{X}_{n}+\lambda n Y\right) w=\tilde{X}_{n}^{T} Y_{n}
$$

What About Computational Complexity?

$$
O\left(p^{3}\right)+O\left(p^{2} n\right)
$$

What if p is much larger than n ?

$$
\begin{aligned}
& \left(X_{n}^{T} X_{n}+\lambda n I\right)^{-1} X_{n}^{T}=X_{n}^{T}\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} \\
& w=X_{n}^{T} \underbrace{\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} Y_{n}}_{c}=\sum_{i=1}^{n} x_{i}^{T} c_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \left(X_{n}^{T} X_{n}+\lambda n I\right)^{-1} X_{n}^{T}=X_{n}^{T}\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} \\
& w=X_{n}^{T} \underbrace{\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} Y_{n}}_{c}=\sum_{i=1}^{n} x_{i}^{T} c_{i}
\end{aligned}
$$

Computational Complexity: $O\left(p^{3}\right)+Q\left(p^{2} n\right)$

$$
\begin{aligned}
& \left(X_{n}^{T} X_{n}+\lambda n I\right)^{-1} X_{n}^{T}=X_{n}^{T}\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} \\
& w=X_{n}^{T} \underbrace{\left(X_{n} X_{n}^{T}+\lambda n I\right)^{-1} Y_{n}}_{c}=\sum_{i=1}^{n} x_{i}^{T} c_{i}
\end{aligned}
$$

Kernels

$$
\begin{gathered}
w=\sum_{j=1}^{n} x_{i} c_{i} \Rightarrow f(x)=x^{T} w=\sum_{j=1}^{n} \underbrace{x^{T} x_{i}}_{K\left(x, x_{i}\right)} c_{i} \\
\left(K_{n}+\lambda n I\right)^{-1} c=Y_{n}, \quad\left(K_{n}\right)_{i, j}=K\left(x_{i}, x_{j}\right)
\end{gathered}
$$

- the linear kernel $K\left(x, x^{\prime}\right)=x^{T} x^{\prime}$,
- the polynomial kernel $K\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+1\right)^{d}$,
- the Gaussian kernel $K\left(x, x^{\prime}\right)=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}}$,

Plot

$$
\hat{f}(x)=\sum_{i=1}^{n} K\left(x_{i}, x\right) c_{i}
$$

things I won't tell you about

- Reproducing Kernel Hilbert Spaces
- Gaussian Processes
- Integral Equations
- Sampling Theory / Inverse Problems
- Loss functions- SVM, Logistic...
- Multi - task, labels, outputs, classes

End of PART II

- Regularization I: Linear Least Squares
- Regularization II: Kernel Least Squares

Regularized Least Squares - Dictionaries - Kernels

PART III

-a) Variable Selection: OMP
-b) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to learn interpretable models from data

n patients p gene expression measurements

$$
f_{w}(x)=w^{T} x=\sum_{j=1}^{D} x^{j} w^{j}
$$

Which variables are important for prediction?

Or
Torture the data until they confess

Sparsity: only some of the coefficients are non zero

Brute Force Approach

 check all individual variables, then all couple, triplets.....$$
\begin{gathered}
\min _{w \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{w}\left(x_{i}\right)\right)^{2}+\lambda\|w\|_{0} \\
\|w\|_{0}=\left|\left\{j \mid w^{j} \neq 0\right\}\right|
\end{gathered}
$$

Greedy approaches/Matching Pursuit

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,
(3) update the index set to include the index of such variable,
(4) update/compute coefficient vector,
(5) update residual.

$$
r_{0}=Y_{n}, \quad, w_{0}=0, \quad I_{0}=\emptyset
$$

Matching Pursuit
(Mallat Zhang '93)
for $i=1, \ldots, T-1$

$$
\begin{aligned}
& k=\arg \max _{j=1, \ldots, D} a_{j}, \quad a_{j}=\frac{\left(r_{i-1}^{T} X^{j}\right)^{2}}{\left\|X^{j}\right\|^{2}} \\
& I_{i}=I_{i-1} \cup\{k\} \\
& w_{i}=w_{i-1}+w_{k}, \quad w_{k} k=v_{k} e_{k} \\
& r_{i}=r_{i-1}-X w^{k}
\end{aligned}
$$

end

$$
\overbrace{v^{j}}=\frac{r_{i-1}^{T} X^{j}}{\left\|X^{j}\right\|^{2}}=\arg \min _{v \in \mathbb{R}}\left\|r_{i-1}-X^{j} v\right\|^{2}, \quad\left\|r_{i-1}-X^{j} v^{j}\right\|^{2}=\left\|r_{i-1}\right\|^{2}-a_{43}
$$

Basis Pursuit/Lasso

(Chen Donoho Saunders ~95, Tibshirani ‘96)

$$
\begin{aligned}
&\|w\|_{1}=\sum_{j=1}^{D}\left|w^{j}\right| \\
& \min _{w \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{w}\left(x_{i}\right)\right)^{2}+\lambda\|w\|_{0}
\end{aligned}
$$

Problem is now convex and can be solved using convex optimization, in particular so called proximal methods

things I won't tell you about

- Solving underdetermined systems
- Sampling theory
- Compressed Sensing
- Structured Sparsity
- From vector to matrices- from sparsity to low rank

End of PART III a)

-a) Variable Selection: OMP
-b) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy \& Convex Relaxation Approaches

PART III b)

-a) Variable Selection: OMP
-b) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to reduce data dimensionality in absence of labels, namely unsupervised learning

Dimensionality Reduction for Data Visualization

Public domain content (from National Institute of standards and Technology).

Dimensionality Reduction

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

Consider first $k=1$

PCA

$$
\min _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2},
$$

Computations?
Statistics?

$$
\min _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}
$$

Statistics?

$$
\begin{gathered}
\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}=\left\|x_{i}\right\|-\left(w^{T} x_{i}\right)^{2} \\
\Longrightarrow \max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2} . \\
\Longrightarrow \max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left(w^{T}\left(x_{i}-\bar{x}\right)\right)^{2}
\end{gathered}
$$

$$
\min _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\left(w^{T} x_{i}\right) w\right\|^{2}
$$

Computations?

w_{1} max eigenvector of C_{n}

$$
\max _{w \in \mathbb{S}^{D-1}} \frac{1}{n} \sum_{i-1}^{n}\left(w^{T} x_{i}\right)^{2} . \Leftrightarrow \max _{w \in \mathbb{S}^{D-1}} w^{T} C_{n} w, \quad C_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

$$
\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} w^{T} x_{i}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i} x_{i}^{T} w=w^{T}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}\right) w
$$

Dimensionality Reduction

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

What about $k=2$?
w_{2} second eigenvector of C_{n}

$$
\max _{\substack{w \in \mathbb{S} D-1 \\ w \perp w_{1}}} w^{T} C_{n} w, \quad C_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}
$$

$$
M: X=\mathbb{R}^{D} \rightarrow \mathbb{R}^{k}, \quad k \ll D
$$

things I won't tell you about

- Random Maps: Johnson-Linderstrauss Lemma
- Non Linear Maps: Kernel PCA, Laplacian/ Diffusion maps

End of PART III b)

-a) Variable Selection: OMP
-b) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy \& Convex Relaxation Approaches

The End

Image removed due to copyright restrictions. Please see the video.

PART IV

- Matlab practical session

Afternoon

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Brains, Minds and Machines Summer Course
Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

