Note: All references to Figures and Equations whose numbers are not preceded by an " S " refer to the textbook.

Because the coefficients of the polynomial

$$
\begin{equation*}
s^{5}+s^{4}+3 s^{3}+4 s^{2}+s+2 \tag{S4.1}
\end{equation*}
$$

are all present and of the same sign, the necessary condition for all roots to have negative real parts is satisfied. The Routh array is:

$$
\begin{array}{ccc}
1 & 3 & 1 \\
1 & 4 & 2 \tag{S4.2}\\
\frac{(1 \times 3)-(1 \times 4)}{1}=-1 & \frac{(1 \times 1)-(1 \times 2)}{1}=-1 & 0 \\
\frac{(-1 \times 4)-(1 \times-1)}{-1}=3 & \frac{(-1 \times 2)-(1 \times 0)}{-1}=2 & 0 \\
\frac{(3 \times-1)-(-1 \times 2)}{3}=-\frac{1}{3} & 0 & 0 \\
\frac{(-1 / 3 \times 2)-(3 \times 0)}{-1 / 3}=2 & 0 & 0
\end{array}
$$

Redrawing the array for clarity, we have

1	3	1
1	4	2
-1	-1	0
3	2	0
$-1 / 3$	0	0
2	0	0

There are four sign changes in the first column, and thus four right-half-plane zeros of the polynomial.

Solution 4.2 (P4.2)

Following the development on pp. 116 and 117 of the textbook, we write the characteristic equation as 1 minus the loop transmission. That is,

$$
\begin{align*}
& \text { Characteristic }=1-L(s)=1+\frac{a_{o}}{(\tau s+1)^{4}} \tag{S4.4}\\
& \text { equation }
\end{align*}
$$

After clearing fractions, the characteristic polynomial is

$$
\begin{align*}
P(s) & =(\tau s+1)^{4}+a_{o} \tag{S4.5}\\
& =\tau^{4} s^{4}+4 \tau^{3} s^{3}+6 \tau^{2} s^{2}+4 \tau s+1+a_{o}
\end{align*}
$$

The Routh array associated with this polynomial is

$$
\begin{array}{ccc}
\tau^{4} & 6 \tau^{2} & 1+a_{o} \\
4 \tau^{3} & 4 \tau & 0 \tag{S4.6}\\
5 \tau^{2} & 1+a_{o} & 0 \\
4 \tau\left(\frac{4-a_{o}}{5}\right) & 0 & 0 \\
1+a_{o} & 0 & 0
\end{array}
$$

The reader should check the algebra used to derive this array.
Assuming τ is positive, roots with positive real parts occur for $a_{o}<-1$ (one right-half-plane zero), and for $a_{o}>4$ (two right-halfplane zeros). Recall that the problem asks for the a_{o} that results in a pair of complex roots on the imaginary axis. Only the value a_{o} $=4$ satisfies this condition. With $a_{o}=4$, the entire fourth row is zero, and we can solve for the pole locations by using the auxiliary equation. Using the coefficients of the third row, the auxiliary equation is

$$
\begin{equation*}
5 \tau^{2} s^{2}+5=0 \tag{S4.7}
\end{equation*}
$$

The equation has solutions at

$$
\begin{equation*}
s= \pm \frac{j}{\tau} \tag{S4.8}
\end{equation*}
$$

indicating that with $a_{o}=4$, the system will oscillate at $\frac{1}{\tau} \mathrm{rad} / \mathrm{sec}$.
Now that we have found two of the poles for $a_{o}=4$, they can be factored out to find the two other roots of the characteristic equation. That is, we can factor $P(s)$ as the term $\tau^{2} s^{2}+1$ multiplied by a quadratic. This quadratic can be found by applying synthetic division to $P(s)$ as shown below.

$$
\begin{gather*}
\tau ^ { 2 } s ^ { 2 } + 1 \longdiv { \tau ^ { 2 } s ^ { 2 } + 4 \tau s + 5 } \\
\frac{\tau^{4} s^{4}+4 \tau^{3} s^{3}+6 \tau^{2} s^{2}+4 \tau s+5}{4 \tau^{2} s^{2}} \\
\frac{4 \tau^{3} s^{3}+5 \tau^{2} s^{2}+4 \tau s}{5 \tau^{2} s^{2}}+5 \tau s+5 \tag{S4.9}\\
\frac{5 \tau^{2} s^{2}+5}{0}
\end{gather*}
$$

Then the two remaining poles are solutions of

$$
\begin{equation*}
\tau^{2} s^{2}+4 \tau s+5=0 \tag{S4.10}
\end{equation*}
$$

which is solved by the quadratic formula to give

$$
\begin{equation*}
s=\frac{-2+j}{\tau} \tag{S4.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
s=\frac{-2-j}{\tau} \tag{S4.11b}
\end{equation*}
$$

as the two other closed-loop pole locations when $a_{o}=4$.

MIT OpenCourseWare
http://ocw.mit.edu

RES.6-010 Electronic Feedback Systems

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

