Note: All references to Figures and Equations whose numbers are *not* preceded by an "S" refer to the textbook.

Because the coefficients of the polynomial

Solution 4.1 (P4.1)

Stability

$s^5 + s^4 + 3s^3 + 4s^2 + s + 2$ (S4.1)

are all present and of the same sign, the necessary condition for all roots to have negative real parts is satisfied. The Routh array is:

Redrawing the array for clarity, we have

	1	3	1
	2	4	1
(54.2)	0	-1	-1
(54.3)	0	2	3
	0	0	— ¼
	0	0	2

There are four sign changes in the first column, and thus four righthalf-plane zeros of the polynomial. **Solution 4.2 (P4.2)**

Following the development on pp. 116 and 117 of the textbook, we write the characteristic equation as 1 minus the loop transmission. That is,

Characteristic =
$$1 - L(s) = 1 + \frac{a_o}{(\tau s + 1)^4}$$
 (S4.4)
equation

After clearing fractions, the characteristic polynomial is

$$P(s) = (\tau s + 1)^4 + a_o$$

$$= \tau^4 s^4 + 4\tau^3 s^3 + 6\tau^2 s^2 + 4\tau s + 1 + a_o$$
(S4.5)

The Routh array associated with this polynomial is

$ au^4$	$6\tau^2$	$1 + a_{o}$	
$4 au^3$	4τ	0	
$5\tau^2$	$1 + a_{o}$	0	(S4.6)
$4\tau\left(\frac{4-a_o}{5}\right)$	0	0	
$1 + a_{o}$	0	0	

The reader should check the algebra used to derive this array.

Assuming τ is positive, roots with positive real parts occur for $a_o < -1$ (one right-half-plane zero), and for $a_o > 4$ (two right-half-plane zeros). Recall that the problem asks for the a_o that results in a pair of complex roots on the imaginary axis. Only the value $a_o = 4$ satisfies this condition. With $a_o = 4$, the entire fourth row is zero, and we can solve for the pole locations by using the auxiliary equation. Using the coefficients of the third row, the auxiliary equation is

$$5\tau^2 s^2 + 5 = 0 \tag{S4.7}$$

The equation has solutions at

$$s = \pm \frac{j}{\tau}$$
 (S4.8)

indicating that with $a_o = 4$, the system will oscillate at $\frac{1}{\tau}$ rad/sec.

Now that we have found two of the poles for $a_o = 4$, they can be factored out to find the two other roots of the characteristic equation. That is, we can factor P(s) as the term $\tau^2 s^2 + 1$ multiplied by a quadratic. This quadratic can be found by applying synthetic division to P(s) as shown below.

$$\frac{\tau^{2}s^{2} + 4\tau s + 5}{\tau^{2}s^{2} + 1} \frac{\tau^{2}s^{2} + 4\tau s + 5}{\tau^{4}s^{4} + 4\tau^{3}s^{3} + 6\tau^{2}s^{2} + 4\tau s + 5}{4\tau^{3}s^{3} + 5\tau^{2}s^{2} + 4\tau s + 5}$$

$$\frac{4\tau^{3}s^{3} + 4\tau s}{5\tau^{2}s^{2} + 5} \frac{5\tau^{2}s^{2} + 5}{0}$$
(S4.9)

Then the two remaining poles are solutions of

$$\tau^2 s^2 + 4\tau s + 5 = 0 \tag{S4.10}$$

which is solved by the quadratic formula to give

$$s = \frac{-2+j}{\tau}$$
(S4.11a)

and

$$s = \frac{-2 - j}{\tau}$$
(S4.11b)

as the two other closed-loop pole locations when $a_o = 4$.

RES.6-010 Electronic Feedback Systems Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.