

Blackboard 2.1

Blackboard 2.2

Viewgraph 2.1

Feedback system illustrating effects of disturbances

viewgraph 2.5	Values of Variables at Breakpoints				
	ν _I	$v_E = v_I - v_F$	$v_A = 10^3 v_E$	$v_B = v_O$	$v_F = 0.1 v_O$
	<-0.258	v, + 0.250	$10^3 v_I + 250$	- 2.5	- 0.25
	- 0.258	- 0.008	$-\frac{1}{8}$	- 2.5	- 0.25
	- 0.203	- 0.003	- 3	- 2	- 0.2
	- 10 ⁻³	- 10 ⁻³	- 1	0	0
	10 ⁻³	10 ⁻³	1	0	0
	0.203	0.003	3	2	0.2
	0.258	0.008	8	2.5	0.25
	> 0.258	$v_I = 0.250$	$10^3 v_I - 250$	2.5	0.25

h 7 5 **x** 7 •

Viewgraph 2.6

System transfer characteristics (closed loop) (Not to scale)

Demonstration Photograph 2.1 Nonlinear amplifier demonstration

Much of our effort in this subject involves the properties of linear feedback control systems. However, feedback is often used to either provide controlled nonlinearities or to moderate the effects of the nonlinearities associated with virtually all physical components.

The economic impact of improving the performance of a nonlinear power handling element by adding gain at a low signal power level of the system can be substantial.

Similarly, feedback often provides a convenient and economical means for reducing the sensitivity of systems to externally applied disturbances. Comments

Reading

Textbook: The material in this lecture parallels that in Sections 2.3.2 and 2.3.4. Please read this material if you have not done so in connection with Lecture 1.

Problems

Problem 2.1 (P2.3)

Problem 2.2 (P2.4)

Problem 2.3 (P2.5): For parts (a) and (b) assume that the sinusoidal disturbance term v_N is equal to zero. Then, for part (c) let v_N equal the indicated value of sin 377t.

RES.6-010 Electronic Feedback Systems Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.