26 Feedback Example:
 The Inverted Pendulum

Solutions to
 Recommended Problems

S26.1
(a)

$$
\begin{aligned}
\frac{L d^{2} \theta(t)}{d t^{2}} & =g \theta(t)-a(t)+L x(t), \\
\frac{L d^{2} \theta(t)}{d t^{2}}-g \theta(t) & =L x(t)
\end{aligned}
$$

Taking the Laplace transform of both sides yields

$$
\begin{aligned}
s^{2} L \theta(s)-g \theta(s) & =L X(s), \\
\theta(s) & =\frac{X(s)}{s^{2}-g / L}, \\
\frac{\theta(s)}{X(s)} & =\frac{1}{s^{2}-g / L}=\frac{1}{(s+\sqrt{g / L})(s-\sqrt{g / L})},
\end{aligned}
$$

The pole at $\sqrt{g / L}$ is in the right half-plane and therefore the system is unstable.
(b) We are given that $a(t)=K \theta(t)$. See Figure S26.1-1.

Figure S26.1-1

$$
\frac{\theta(s)}{X(s)}=\frac{H}{1+G H},
$$

so, with

$$
H=\frac{1}{s^{2}-g / L} \quad \text { and } \quad G=\frac{K}{L},
$$

$\theta(s) / X(s)$ is given by

$$
\frac{\theta(s)}{X(s)}=\frac{1}{s^{2}-(g / L)+(K / L)}
$$

The poles of the system are at

$$
s= \pm \sqrt{\frac{K-g}{L}}
$$

which implies that the system is unstable. Any $K<g$ will cause the system poles to be pure imaginary, thereby causing an oscillatory impulse response.
(c) Now the system is as indicated in Figure S26.1-2.

Figure S26.1-2

$$
\begin{aligned}
H(s) & =\frac{1}{s^{2}-\frac{g}{L}+\frac{K_{1}}{L}+\frac{K_{2}}{L} s} \\
& =\frac{1}{s^{2}+\frac{K_{2}}{L} s+\frac{K_{1}-g}{L}}
\end{aligned}
$$

The poles are at

$$
\frac{-K_{2}}{2 L} \pm \sqrt{\left(\frac{K_{2}}{2 L}\right)^{2}-\frac{\left(K_{1}-g\right)}{L}}
$$

which can be adjusted to yield a stable system. A general second-order system can be expressed as

$$
H_{g}(s)=\frac{A \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

so, for our case,

$$
\begin{aligned}
\omega_{n}^{2} & =\frac{K_{1}-g}{L} \quad \text { and } \quad 2 \zeta \omega_{n}=\frac{K_{2}}{L} \\
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
L & =0.5 \mathrm{~m} \\
\zeta & =1 \\
\omega_{n} & =3 \mathrm{rad} / \mathrm{s} \\
K_{1} & =14.3 \mathrm{~m} / \mathrm{s}^{2} \\
K_{2} & =3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a) Here

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
G(s) & =K
\end{aligned}
$$

The closed-loop transfer function $H_{c}(s)$ is

$$
\begin{aligned}
H_{c}(s) & =\frac{H}{1+G H}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}+K \omega_{n}^{2}} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}(1+K)} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2\left(\frac{\zeta \omega_{n}}{\hat{\omega}_{n}}\right) \hat{\omega}_{n} s+\hat{\omega}_{n}^{2}}, \quad \text { where } \hat{\omega}_{n}=\omega_{n}(1+K)^{1 / 2} \\
& =\frac{\left(\omega_{n}^{2} / \hat{\omega}_{n}^{2}\right) \hat{\omega}_{n}^{2}}{s^{2}+2 \hat{\zeta} \hat{\omega}_{n}+\hat{\omega}_{n}^{2}}, \quad \text { where } \hat{\zeta}=\zeta \frac{\omega_{n}}{\hat{\omega}_{n}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\hat{\omega}_{n} & =\omega_{n}(1+K)^{1 / 2} \\
\hat{\zeta} & =\frac{\zeta}{(1+K)^{1 / 2}} \\
A & =\frac{\omega_{n}^{2}}{\hat{\omega}_{n}^{2}}=\frac{1}{1+K}
\end{aligned}
$$

for $K=1, \hat{\omega}_{n}=\sqrt{2} \omega_{n}$, and $\hat{\zeta}=\zeta / \sqrt{2}$.
(b) Now we want to determine the poles of the closed-loop system

$$
H_{c}(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}(1+K)}
$$

The poles are at

$$
-\zeta \omega_{n} \pm \sqrt{\zeta^{2} \omega_{n}^{2}-\omega_{n}^{2}(1+K)}
$$

(c)

Figure S26.2
The poles start out at $\pm \infty$, approach each other and touch at $K=\zeta^{2}-1$, and then proceed to $-\zeta \omega_{n} \pm j \infty$.
(a) $\frac{Y(s)}{X(s)}=H_{1}(s)=\frac{K_{1} K_{2}}{1+\frac{K_{1} K_{2} \alpha}{\beta s+r}}=\frac{(\beta s+r) K_{1} K_{2}}{\beta s+r+K_{1} K_{2} \alpha}$
(b) $\frac{Y(s)}{W(s)}=H_{2}(s)=\frac{K_{2}}{1+\frac{K_{1} K_{2} \alpha}{\beta s+r}}=\frac{(\beta s+r) K_{2}}{\beta s+r+K_{1} K_{2} \alpha}$
(c) For stability we require the pole to be in the left half-plane.

$$
\begin{aligned}
s_{p} & =-\left(\frac{r+K_{1} K_{2} \alpha}{\beta}\right)<0 \\
& \Rightarrow \frac{r+K_{1} K_{2} \alpha}{\beta}>0
\end{aligned}
$$

If $\beta>0$, then $r / \alpha>-K_{1} K_{2}$; if $\beta<0$, then $r / \alpha<-K_{1} K_{2}$.

S26.4

$$
\begin{aligned}
H(s) & =\frac{K}{1+\frac{K(s+1)}{s+100}}=\frac{K(s+100)}{s+100+K s+K} \\
& =\frac{K(s+100)}{(K+1)\left(s+\frac{100+K}{K+1}\right)}
\end{aligned}
$$

(a) $K=0.01$, $H(s)=\frac{0.01(s+100)}{1.01(s+99.0198)}$
The zero is at $s=-100$, and the pole is at $s=-99.0198$.
(b) $K=1$,

$$
H(s)=\frac{s+100}{2\left(s+\frac{101}{2}\right)}
$$

The zero is at $s=-100$; the pole is at $s=-50.5$.
(c) $K=10$,

$$
H(s)=\frac{10(s+100)}{11\left(s+\frac{110}{11}\right)}
$$

The zero is at $s=-100$; the pole is at $s=-10$.
(d) $K=100$,
$H(s)=\frac{100(s+100)}{101\left(s+\frac{200}{101}\right)}$
The zero is at $s=-100$; the pole is at $s=-1.9802$.
(a) $H(s)=\frac{\frac{1}{s+1}}{1+\frac{K}{s+1}}=\frac{1}{s+1+K}$

The pole is at $s=-1-K$, as shown in Figure S26.5-1.

Im		Im	
$K>0$	s plane	$K<0$	s plane
-	$R e$		\rightarrow
-1		-1	
Figure S26.5-1			

The pole moves from infinity to negative infinity as K changes from negative infinity to infinity.
(b) $H(s)=\frac{\frac{1}{s-1}}{1+\left(\frac{K}{s+3} \frac{1}{s-1}\right)}=\frac{s+3}{(s+3)(s-1)+K}$
$=\frac{s+3}{s^{2}+2 s+K-3}$
The poles are at $s_{p}=-1 \pm \sqrt{1-(K-3)}$, as shown in Figure S26.5-2.

Figure S26.5-2

The poles start at $\pm \infty$ when $K=-\infty$, move toward -1 , touch when $K=4$, and proceed to $-1 \pm j \infty$ as K approaches positive infinity.

Solutions to
 Optional Problems

S26.6
(a) The poles for the closed-loop system are determined by the denominator of the closed-loop transfer function

$$
1+\frac{K z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=0
$$

so

$$
\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)+K z=0
$$

Since we are told a pole occurs when $z=-1$, we want to solve the equation for K :

$$
K=\left.\frac{-\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}{z}\right|_{z=-1}=\frac{15}{8}
$$

(b) In a similar manner to that in part (a),

$$
K=\left.\frac{-\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}{z}\right|_{z=1}=\frac{-3}{8}
$$

(c) From the root locus diagram in Figure P26.6, we see that for $K>0$ when K exceeds a critical value of $K=\frac{15}{8}$, as determined in part (a), one root remains outside the unit circle. Similarly, when $K<-\frac{3}{8}$, one root is outside the unit circle. Therefore, to ensure stability, we need

$$
-\frac{3}{8}<K<\frac{15}{8}
$$

(a) The closed-loop transfer function is

$$
\frac{Y(s)}{X(s)}=\frac{H(s)}{1+G(s) H(s)}=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}
$$

and, therefore, from the given $H_{c}(s)$ and $H_{p}(s)$, we have

$$
\frac{Y(s)}{X(s)}=\frac{\frac{K \alpha}{s+\alpha}}{1+\frac{K \alpha}{s+\alpha}}=\frac{K \alpha}{s+\alpha+K \alpha}=\frac{K \alpha}{s+(K+1) \alpha}
$$

The system is stable for denominator roots in the left half of the s plane; therefore $-(K+1) \alpha<0$ implies that the system is stable.

Now since $E(s) H_{c}(s) H_{p}(s)=Y(s)$, we have

$$
\frac{E(s)}{X(s)}=\frac{1}{1+H_{c}(s) H_{p}(s)}=\frac{s+\alpha}{s+\alpha+K \alpha}=\frac{s+\alpha}{s+(K+1) \alpha}
$$

The final value theorem, $\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)$, shows that

$$
\lim _{s \rightarrow 0} \frac{s(s+\alpha)}{s+(K+1) \alpha}=0 \quad \text { for }-(K+1) \alpha<0
$$

Note that if $x(t)=u(t)$, then

$$
E(s)=\left(\frac{1}{s}\right) \frac{s+\alpha}{s+(K+1) \alpha}
$$

and

$$
\lim _{s \rightarrow 0} s\left(\frac{1}{s}\right) \frac{s+\alpha}{s+(K+1) \alpha}=\frac{1}{K+1} \neq 0, \text { for }-(K+1) \alpha<0
$$

so $\lim _{t \rightarrow \infty} e(t) \neq 0$.
(b) $\frac{Y(s)}{X(s)}=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}$

$$
\begin{aligned}
& =\frac{\left(K_{1}+\frac{K_{2}}{s}\right) \frac{\alpha}{s+\alpha}}{1+\left(K_{1}+\frac{K_{2}}{s}\right) \frac{\alpha}{s+\alpha}} \\
& =\frac{\left(s K_{1}+K_{2}\right) \alpha}{s(s+\alpha)+\left(K_{1} s+K_{2}\right) \alpha}=\frac{\left(s+\frac{K_{2}}{K_{1}}\right) K_{1} \alpha}{s^{2}+s \alpha\left(K_{1}+1\right)+K_{2} \alpha}
\end{aligned}
$$

The poles for this system occur at

$$
s=\frac{-\alpha\left(K_{1}+1\right)}{2} \pm \sqrt{\left(\frac{\alpha\left(K_{1}+1\right)}{2}\right)^{2}-K_{2} \alpha}
$$

Note that if $\alpha\left(K_{1}+1\right)>0$ and if $K_{2} \alpha>0$, we are assured that both poles are in the left half-plane. Therefore, $\alpha\left(K_{1}+1\right)>0$ and $K_{2} \alpha>0$ are the conditions for stability. Now since

$$
\begin{aligned}
E(s) & =X(s) \frac{1}{1+H_{c}(s) H_{p}(s)} \\
& =\frac{1}{s} \frac{s(s+\alpha)}{s^{2}+\alpha\left(K_{1}+1\right) s+K_{2} \alpha}
\end{aligned}
$$

then

$$
\lim _{s \rightarrow 0} s E(s)=0 \quad \text { implies that } \quad \lim _{t \rightarrow \infty} e(t)=0
$$

for $\alpha\left(K_{1}+1\right)>0$ and $K_{2} \alpha>0$, so we can track a step with this stable system.
(a) $\frac{Y(s)}{X(s)}=H(s) C(s)$

$$
=\frac{1}{(s+1)(s-2)}\left(\frac{s-2}{s+3}\right)
$$

We can see from this expression that the overall transfer function for the system is

$$
\frac{Y(s)}{X(s)}=\frac{1}{(s+1)(s+3)}
$$

a stable system. In effect, the system was made stable by canceling a pole of $H(s)$ with a zero of $C(s)$. In practice, if this is not done exactly, i.e., if any com-
ponent tolerances cause the zero to be slightly off from $s=2$, the resultant system will still be unstable.
(b) $\frac{Y(s)}{X(s)}=\frac{C(s) H(s)}{1+C(s) H(s)}=\frac{K}{(s+1)(s-2)+K}$

$$
=\frac{K}{s^{2}-s+K-2}
$$

The poles are at

$$
\frac{1}{2} \pm \sqrt{\frac{1}{4}-(K-2)}
$$

We see from this that at least one pole is in the right half-plane, i.e., there is instability for all values of K.
(c) $\frac{Y(s)}{X(s)}=\frac{K(s+a) \frac{1}{(s+1)(s-2)}}{1+K(s+a) \frac{1}{(s+1)(s-2)}}$
$=\frac{K(s+a)}{(s+1)(s-2)+K(s+a)}$
$=\frac{K(s+a)}{s^{2}-s-2+K s+K a}=\frac{K(s+a)}{s^{2}+(K-1) s+(K a-2)}$
The poles are at

$$
-\frac{(K-1)}{2} \pm \sqrt{\left(\frac{K-1}{2}\right)^{2}-(K a-2)}
$$

Now, if $K a-2>0$, the system is stable. $K>2 / a$ because $a>0$ is assumed. This is true for $1>a>0$ and $2>a>1$. For $a \geq 2$, the system is stable for $K>1$.
(d) $\frac{Y(s)}{X(s)}=\frac{K(s+a)}{s^{2}+(K-1) s+(K a-2)}, \quad a=2$

We want $K-1=\omega_{n}, 2 K-2=\omega_{n}^{2}$. So

$$
\begin{aligned}
(K-1)^{2} & =2 K-2, \\
K & =3 \quad \text { or } \quad K=1
\end{aligned}
$$

If $K=1$, then $\omega_{n}=0$, so $K=3$ implies that $\omega_{n}=2$.
(a) $\frac{E(s)}{X(s)}=\frac{1}{1+H(s)}=\frac{s^{l}}{s^{l}+G(s)}$, where

$$
G(s)=\frac{K \prod_{k=1}^{m}\left(s-\beta_{K}\right)}{\prod_{k=1}^{n-l}\left(s-\alpha_{K}\right)}
$$

For $s=0, G(s)$ constant $\equiv g$.

$$
E(s)=\frac{(1 / s) s^{l}}{s^{l}+g} \quad \text { and } \quad \lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s^{l}}{s^{l}+g}=0
$$

Thus, $\lim _{t \rightarrow \infty} e(t)=0$.
(b) $E(s)=\frac{s^{-1}}{s+G(s)} \quad$ for $l=1, \quad x(t)=u_{-2}(t)$

So

$$
\lim _{s \rightarrow 0} s E(s)=\left.\frac{1}{s+G(s)}\right|_{s=0}=\frac{1}{g}=\text { Constant }
$$

(c) $E(s)=\frac{s^{1-k}}{s+G(s)}, \quad s E(s)=\frac{s^{2-k}}{s+G(s)}$

For $k>2$,

$$
\lim _{s \rightarrow 0} s E(s)=\infty, \quad \lim _{t \rightarrow \infty} e(t)=\infty
$$

(d) (i)

$$
E(s)=\frac{s^{l-k}}{s^{l}+G(s)}, \quad s E(s)=\frac{s^{l-k+1}}{s^{l}+G(s)}
$$

If $k \leq l$, then

$$
\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s^{l-k+1}}{s^{l}+G(s)}=\frac{0}{0+g}=0
$$

so $\lim _{t \rightarrow \infty} e(t)=0$.
(ii) If $k=l+1$ and since

$$
E(s)=\frac{s^{l-k}}{s^{l}+G(s)}
$$

then

$$
\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{1}{s^{l}+G(s)}=\frac{1}{g}=\text { Constant }
$$

Thus, $\lim _{t \rightarrow \infty} e(t)=$ Constant.
(iii) If $k>l+1$, then since

$$
E(s)=\frac{s^{l-k}}{s^{l}+G(s)}, \quad s E(s)=\frac{s^{l-k+1}}{s^{l}+G(s)}
$$

$\lim _{s \rightarrow 0} s E(s)=\infty$ implies $\lim _{t \rightarrow \infty} e(t)=\infty$.
(a) $\frac{E(z)}{X(z)}=\frac{1}{1+H(z)}$,

$$
\begin{aligned}
E(z) & =\frac{X(z)}{1+H(z)}=\frac{\frac{z}{z-1}}{1+\frac{1}{(z-1)\left(z+\frac{1}{2}\right)}}=\frac{z\left(z+\frac{1}{2}\right)}{(z-1)\left(z+\frac{1}{2}\right)+1} \\
& =\frac{z^{2}+\frac{1}{2} z}{z^{2}-\frac{1}{2} z+\frac{1}{2}}=1+\frac{z-\frac{1}{2}}{z^{2}-\frac{1}{2} z+\frac{1}{2}}
\end{aligned}
$$

The poles are at $\frac{1}{4} \pm \sqrt{\frac{1}{16}-\frac{1}{2}}$. These poles are inside the unit circle and therefore yield stable inverse z-transforms, so $e[n]=\delta[n]+$ (2 stable sequences). So $\lim _{n \rightarrow \infty} e[n]=0$.
(b) $H(z)=\frac{A(z)}{(z-1) B(z)}$
since $H(z)$ has a pole at $z=1$. Now

$$
\begin{aligned}
\frac{E(z)}{X(z)} & =\frac{1}{1+H(z)}=\frac{(z-1) B(z)}{(z-1) B(z)+A(z)} \\
E(z) & =\frac{\left(\frac{z}{z-1}\right)(z-1) B(z)}{(z-1) B(z)+A(z)} \quad \text { for } x[n]=u[n] \\
& =\frac{z B(z)}{(z-1) B(z)+A(z)}
\end{aligned}
$$

Furthermore, we know that

$$
\frac{Y(z)}{X(z)}=\frac{H(z)}{1+H(z)}=\frac{(z-1) B(z)}{(z-1) B(z)+A(z)}
$$

There are no poles for $|z|>1$ because $h[n]$ is stable. Therefore,

$$
E(z)=\frac{z B(z)}{(z-1) B(z)+A(z)}
$$

has no poles for $|z|>1$, and $\lim _{n \rightarrow \infty} e[n]=0$.
(c) $H(z)=\frac{z^{-1}}{1-z^{-1}}=\frac{1}{z-1}$,

$$
\begin{aligned}
\frac{E(z)}{X(z)} & =\frac{1}{1+H(z)}=\frac{z-1}{z} \\
E(z) & =\frac{z-1}{z} X(z)=\left(\frac{z-1}{z}\right)\left(\frac{z}{z-1}\right) \quad \text { for } x[n]=u[n] \\
& =1 \Rightarrow e[n]=\delta[n]
\end{aligned}
$$

so $e[n]=0, n \geq 1$
(d) $H(z)=\frac{\frac{3}{4} z^{-1}+\frac{1}{4} z^{-2}}{\left(1+\frac{1}{4} z^{-1}\right)\left(1-z^{-1}\right)}$,

$$
\begin{aligned}
\frac{E(z)}{X(z)} & =\frac{1}{1+H(z)}=\frac{\left(1+\frac{1}{4} z^{-1}\right)\left(1-z^{-1}\right)}{\left(1+\frac{1}{4} z^{-1}\right)\left(1-z^{-1}\right)+\frac{3}{4} z^{-1}+\frac{1}{4} z^{-2}} \\
E(z) & =\frac{\left(1+\frac{1}{4} z^{-1}\right)}{\left(1+\frac{1}{4} z^{-1}\right)\left(1-z^{-1}\right)+\frac{3}{4} z^{-1}+\frac{1}{4} z^{-2}} \\
& =1+\frac{1}{4} z^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
e[n] & =\delta[n]+\frac{1}{4} \delta[n-1] \\
& =0, \quad n \geq 2
\end{aligned}
$$

(e) $\frac{E(z)}{X(z)}=\frac{1}{1+H(z)}, \quad H(z)=\frac{X(z)}{E(z)}-1$

For $x[n]=u[n]$, we have

$$
X(z)=\frac{1}{1-z^{-1}}
$$

We would like

$$
e[n]=\sum_{k=0}^{N-1} a_{k} \delta[n-k],
$$

so

$$
E(z)=\sum_{k=0}^{N-1} a_{k} z^{-k}
$$

Therefore,

$$
H(z)=\frac{1-\left(1-z^{-1}\right)\left(\sum_{k=0}^{N-1} a_{k} z^{-k}\right)}{\left(1-z^{-1}\right)\left(\sum_{k=0}^{N-1} a_{k} z^{-k}\right)}
$$

(f) $H(z)=\frac{z^{-1}+z^{-2}-z^{-3}}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}, \quad \frac{E(z)}{X(z)}=\frac{1}{1+H(z)}$

Now $x[n]=(n+1) u[n]$ and

$$
X(z)=\frac{1}{\left(1-z^{-1}\right)^{2}},
$$

so

$$
\begin{aligned}
E(z) & =\frac{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2} \frac{1}{\left(1-z^{-1}\right)^{2}}}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}+z^{-1}+z^{-2}-z^{-3}} \\
& =\frac{1+z^{-1}}{1}
\end{aligned}
$$

and

$$
\begin{aligned}
e[n] & =\delta[n]+\delta[n-1] \\
& =0, \quad n \geq 2
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

