
26 Feedback Example:

The Inverted Pendulum

Solutions to 
Recommended Problems 
S26.1 

Ld20(t)
(a) Ldz6(t) = g0(t) a(t) + Lx(t), 

Ld2 (t) 
dt2 - gA(t) = Lx(t) 

Taking the Laplace transform of both sides yields 

szLO(s) - gO(s) = LX(s), 

O(s) = 2X(s) 
s2 - g|L 

0(s) 

X(s) s- g/L (s + \g/L)(s - \ ) 

The pole at \g/L is in the right half-plane and therefore the system is unstable. 

(b) We are given that a(t) = K0(t). See Figure S26.1-1. 

x(t) o+2 1 - -+ 0(t) 

Figure S26.1-1 

0(s) H 

X(s) 1 + GH' 

so, with 

and G = 
H = s g/L 

(s)/X(s) is given by 

0(s) 1 
X(s) s' - (g/L) + (K/L) 

The poles of the system are at 

s=+K-g L ' 

which implies that the system is unstable. Any K < g will cause the system 
poles to be pure imaginary, thereby causing an oscillatory impulse response. 

S26-1
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(c) Now the system is as indicated in Figure S26.1-2. 

1 
H(s) =1 

2 g K1 K 2 

L L L 
1 

2K2s+- s ± K1 -- g 
L L 

The poles are at 

-K2 + K2_ (K_ _ g) 

2L ~ 2L L ' 

which can be adjusted to yield a stable system. A general second-order system 
can be expressed as 

Aw2 
Hg(s) = s2 + 2Aws + w2' 

so, for our case, 

2 
Wn 

K 1
L
-g and 2,w = K

L'2

g = 9.8 m/s 2 

L = 0.5 m 
f = 1 

O= 3 rad/s 
K, = 14.3 m/s 2 

K 2 = 3 m/s 

S26.2 

(a) Here 
2 

H(s) =2 +2 
2+ os + W2 

G(s) = K 
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The closed-loop transfer function He(s) is 

H _2

He(s) = = " 
1 + GH s 2 +2w.s+ w + nKw! 

2 
(A)n 

s2 +2ws+ W2(1 +K 
2 

Wn
S2 + 2 (n,, Z~ 

(s± 2/(i) +( 
s2 + F,+ )2 w 

where w, = 

W,
here - = {

(A.n 

Therefore, 

= wn(l + K)" 2 , 

Wn(1 + K)"/2 

(b) 

(1 + K) 2 , 
2 

A = = 

An 1 +K' 

for K = 1, = V2W, ands"= //2. 
Now we want to determine the poles of the closed-loop system 

(c) 

He(s) = 

The poles are at 

-o 

K = +oo Im 

s2 + 2(,,s + (o2(1 + K) 

± /F~W - Wn(1 + K) 

s plane 

K=_xo=
1 - ' Re 

K = +oo 

Figure S26.2 

The poles start out at ± 0o, approach each other and touch at K 
then proceed to -fo, ±joo. 

= 2 - 1, and 
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S26.3 

(a) = H1(s) = 
K 1K 2 (Os + r)K 1K 2 

X(s)	 1 + K 1K 2a Os + r + K1K 2a 
#s + r 

(b) Y(s) = H2(s) K 2 _ (Os + r)K 2 

W(s)	 1 + K1K2a Os + r + K1K 2a 
Os + r 

(c) For stability we require the pole to be in the left half-plane. 

s= - r + 	 KK 2a) 

r + K1K2a 0 
>0 

If /3> 0, then r/a > -KK 2; if # < 0, then r/a < -K 1 K 2. 

S26.4 

H(s) = K K(s + 100) 

1 + K(s + 1) s + 100 + Ks + K 
S + 100 

K(s + 100) 

(K + 1) s +100 + 	K)K + 1] 

(a) K = 0.01, 

H(s) = 0.01(s + 100) 
1.01(s + 99.0198) 

The zero is at s = -100, and the pole is at s = -99.0198. 
(b) K= 1, 

S + 100 
H(s) = 

2 s + 2 
The zero is at s = -100; the pole is at s = -50.5. 

(c) K =10, 

H(s) = 10(s + 100) 

11 s+ 110)110 

The zero is at s = -100; the pole is at s = -10. 
(d) 	 K = 100, 

100(s + 100)
H(s) = 

101 S 0200) 

The zero is at s = -100; the pole is at s = -1.9802. 
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S26.5 

s-t+ 1 1 
(a) H(s) = K +=1 

+ K s+ 1+ K
1++1 

The pole is at s = -1 - K, as shown in Figure S26.5-1. 

Im Im 

K>O s plane K<O s plane 

- . Re Re 
-1 -1 

Figure S26.5-1 

The pole moves from infinity to negative infinity as K changes from negative 
infinity to infinity. 

1 
s-1i s+3

(b) H(s) = 
1 (s + 3)(s - 1) + K 

+ (K1 + s 

s + 3

s 2 + 2s + K - 3


The poles are at s, = -1 ± \1 - (K - 3), as shown in Figure S26.5-2. 

Im Im 

K>O KK 0 
s plane s plane 

K =4 

Re 

-3 -1 +1 3 

Figure S26.5-2 

The poles start at ± oo when K = -oo, move toward -1, touch when K = 4, 
and proceed to -1 ± joo as K approaches positive infinity. 
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Solutions to

Optional Problems

S26.6 

(a) 	The poles for the closed-loop system are determined by the denominator of the 
closed-loop transfer function 

Kz 
1 + 	 = 0 

(z - 1)(Z - i')' 

so 

(z - -)(z - 1) + Kz = 0 

Since we are told a pole occurs when z = -1, we want to solve the equation 
for K: 

K (z -2)(z-) _ 15 
z z=-1 8 

(b) 	 In a similar manner to that in part (a), 

K (z -2)(z -) -3 
z 1z=1 8 

(c) 	 From the root locus diagram in Figure P26.6, we see that for K > 0 when K 
exceeds a critical value of K = -', as determined in part (a), one root remains 
outside the unit circle. Similarly, when K < -8, one root is outside the unit 
circle. Therefore, to ensure stability, we need 

- < K < ' 

S26.7 

(a) 	The closed-loop transfer function is 

Y(s) _ H(s) _ He(s)H,(s) 
X(s) 1 + G(s)H(s) 1 + He(s)H,(s) 

and, therefore, from the given He(s) andH,(s), we have 

Ka 

Y(s) S + a Ka Ka 

X(s) + Ka s + a + Ka s + (K + 1)a 
s + a 

The system is stable for denominator roots in the left half of the s plane; there
fore -(K + 1)a < 0 implies that the system is stable. 

Now since E(s)He(s)H,(s) = Y(s), we have 

E(s) 1 s + a s + a 

X(s) 1 + He(s)H,(s) s + a + Ka s + (K+ 1)a 

The final value theorem, lim , e(t) = lim,_. sE(s), shows that 

lim s(s= 0 for -(K + 1)a < 0
S-0 	 S+ (K + 1)a 
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Note that if x(t) = u(t), then 

E(s) =() (K+ 1)a 
and 

lims s + # 0, for -(K + 1)a < 0 
S-0 \sJ s + (K +1)a K+ 1 

so limt-, e(t) # 0. 

()Y(S_ He(s)H,(s)

X(s) 1 + He(s)H,(s)


K1+ -2 a 
s ) s + a 

1 + K, + s2 a 

SS + K2 Kia 
(sK + K 2)a \ K 1 

s(s + a) + (Kis + K 2)a S2 + sa(K + 1) + K 2a 

The poles for this system occur at 

- a(K + 1) (a(K+ 1) - K2a 

Note that if a(K + 1) > 0 and if K2a > 0, we are assured that both poles are 
in the left half-plane. Therefore, a(K + 1) > 0 and K 2a > 0 are the conditions 
for stability. Now since 

1 
E(s) = X(s) 1 + He(s)H,(s) 

1 s(s + a) 

S s2 + a(K1 + 1)s + K2a' 

then 

lim sE(s) = 0 implies that lim e(t) = 0, 
s-0 t-CO 

for a(KI + 1) > 0 and K2a > 0, so we can track a step with this stable system. 

S26.8 

(a) = H(s)C(s)
X(s) 

(s + 1)(s - 2)(s + 
We can see from this expression that the overall transfer function for the sys
tem is 

Y(s) 1 

X(s) (s + 1)(s + 3)' 

a stable system. In effect, the system was made stable by canceling a pole of 
H(s) with a zero of C(s). In practice, if this is not done exactly, i.e., if any com
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ponent tolerances cause the zero to be slightly off from s = 2, the resultant 
system will still be unstable. 

(b) 	 Y(s) C(s)H(s) K 
X(s) 1 + C(s)H(s) (s + 1)(s - 2) + K 

K 
s2 - s + K - 2 

The poles are at 

2-v - (K - 2) 

We see from this that at least one pole is in the right half-plane, i.e., there is 
instability for all values of K. 

1 

(c)()Y(S) = 
____+_a)_(s+_1)(s_-_2 (s + 1)(s - 2)X() 1+K(s + a) 1 

X(s) 1____ 

l+~sa(±+ )(- 2 ) 

K(s + a) 
(s + 1)(s - 2) + K(s + a) 

K(s + a) K(s + a) 
s2 - s - 2 + Ks + Ka s2 + (K - 1)s + (Ka - 2) 

The poles are at 

(K - 1) K_ 

- 2 -V -2- - (Ka - 2) 

Now, if Ka - 2 > 0, the system is stable. K > 2/a because a > 0 is assumed. 
This is true for 1 > a > 0 and 2 > a > 1. For a > 2, the system is stable for 
K > 1. 

Y(S) K(s + a)
2(d) 	X(s) s + (K - 1)s + (Ka - 2)' 

2 

We want K - 1 = w,, 2K - 2 = W. So 

(K - 1)2 = 2K - 2, 
K = 3 or K= 1 

IfK= 1, thenw, = 0, so K= 3 implies thatw, = 2. 

S26.9 

E(s) 1 S1 
(a) -_____-where 

X(s) 1 + H(s) s' + G(s)' 

K f (s - #K 

G(s) 
n-1 

k=1 

17 (s - aK) 
k=1 

For s = 0, G(s) constant = g. 

(1/s)s'
E(s) = , and lim sE(s) = lim 

s___ 
= 0 

s + 	 g s-0 s--o S + g 

Thus, lim e(t) = 0. 
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(b) E(s) =	
s + 

S-I 

G(s) 
for 1 = 1, x(t) = u- 2(t) 

So


1 1

lim sE(s) = Constant 
S-0 s + G(s) 1,=o g 

1-k5	 2-k 

(c) E(s) = 	s + G(s), sE(s) = s + 
5 

G(s) 

For k > 2, 

lim sE(s) = co, lim e(t) = oo 
s-o 

S 1-k 
(d) 	 (i) E(s) = 

S' + G(s) 
,G sE(s) 

s' + G(s)

If k :5 1, then


lim sE(s) = lim 
1-k+1 

0 0,= 0, 
s-O s-o s' + G(s) 0+ g 

so lim,_., e(t) = 0. 

(ii) If k 	= 1 + 1 and since 
1-k 

E(s) = s' + G(s) 

then 

1 1 
lim sE(s) = lim = Constant 
S-0 S-O S' + G(s) g 

Thus, lim,me(t) = Constant. 

(iii) 	 If k > 1 + 1, then since 

S1-k gl-k+1
E(s) = S' + G(s) sE(s) 

s' + G(s) 

lims- 0 sE(s) = oc implies lim_. e(t) = 00. 

S26.10 

E(z) 	 1 
(a) X(z) 1 + H(z)


z

X(z) z- 1 z(z + i)


E(z) = 1 + H(z) 1 (z - 1)(z + i) + 1 
1+(z - 1)(z + 1) 

z 2 + .z 
1±2+ 

-
-
Z 

2 
+z 2 2Z + -2 Z'2 2 

The poles are at i + - . These poles are inside the unit circle and therefore 

yield stable inverse z-transforms, so e[n] = b[n] + (2 stable sequences). So 
lim-,.e[n] = 0. 
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(b) 	H(z) = A(z) 
(z - 1)B(z) 

since H(z) has a pole at z = 1. Now 

E(z) 1 (z - 1)B(z) 

X(z) 1 + H(z) (z - 1)B(z) + A(z)' 

1I
-z )(z - 1)B(z) 
for x[n] = u[n]

(z - 1)B(z) + A(z)


zB(z)

(z - 1)B(z) + A(z)


Furthermore, we know that 

Y(z) H(z) (z - 1)B(z) 

X(z) 1 + H(z) (z - 1)B(z) + A(z) 

There are no poles for Iz I > 1 because h[n] is stable. Therefore, 

zB(z)
E(z) = 

(z - 1)B(z) + A(z)


has no poles for IzI > 1, and lim,-e[n] = 0.


(c) H(z) = - z 1'

E(z) 1 z - 1


X(z) 1 + H(z) z


E(z) = 
z-1 fz-1\ (z for x[n] = u[n]z1 X(z) zz


= 1 =* e[n] = b[n],


so e[n] = 0, n - 1


2z 1 + 1z-2

(d) H(z) 

(1+ -Iz ')(1 	 - z-1)' 

E(z)	 1 (1 + iz-1)(1 - z-1) 

X(z) 1 + H(z) (1 + iz-')(1 - Z-1) + 4z-1 + ,z-2,


E(z) = (1 + tz-1)

(1 + Iz- 1)(1 - z-1) + z + -2


= 1+ tz-'

Therefore, 

e[n] = b[n] + '6[n - 1] 
=0, n - 2 

E(z) = 	 1H H(z) X(z 1()X(z) 1 + H(z) ' E(z)


For x[n] = u[n], we have


1 
X(z) =1 -1 
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We would like 
N-1 

e[n] = a[n - k], 
k=O 

N-1 

E(z) = akz-' 
k=O 

Therefore, 

N-1 
1 Z1- T akz- k)z1) 

(k=0
H(z) = N-

(1-- 1) T akz -k) 
(k=0 

z-I + z- 2 - z- E(z) 1 
(f) H(z) = 

(1 + z-1)(1 - z)2 X(z) 1 + H(z) 

Now x[n] = (n + 1)u[n] and 

X(z) = (1 - z-1)2> 

1 
(1 + z-1)(1 - z-1)2 (1 - z-1)2 

E(z) = 
(1 + Z- 1)(1 - z-1) 2 + z- 1 + z- 2 -z 

1 + z-' 

and 

e[n] = b[n] + b[n - 1] 
=0, n >- 2 
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