25 Feedback

Solutions to Recommended Problems

S25.1
(a)

Figure S25.1-1
We have

$$
\begin{equation*}
V(s)=X(s)-Y(s) K(s) \tag{S25.1-1}
\end{equation*}
$$

and

$$
\begin{equation*}
Y(s)=V(s) H(s) \tag{S25.1-2}
\end{equation*}
$$

From eq. (S25.1-2),

$$
\begin{equation*}
V(s)=\frac{Y(s)}{H(s)} \tag{S25.1-3}
\end{equation*}
$$

Substituting eq. (S25.1-3) into eq. (S25.1-1), we have

$$
\begin{aligned}
& \frac{Y(s)}{H(s)}=X(s)-Y(s) K(s), \\
& Y(s)[1+H(s) K(s)]=H(s) X(s), \\
& \frac{Y(s)}{X(s)}=\frac{H(s)}{1+H(s) K(s)}
\end{aligned}
$$

Similarly,

$$
\frac{Y(z)}{X(z)}=\frac{H(z)}{1+H(z) K(z)}
$$

(b) $Q(s)=\frac{H(s)}{1+K H(s)}, \quad Q(z)=\frac{H(z)}{1+K H(z)}$

For $H(s)=2 /(s-2)$ and $H(z)=2 /(z-2)$,

$$
\begin{aligned}
& Q(s)=\frac{2}{(s-2)+2 K}=\frac{2}{s-2(1-K)} \\
& Q(z)=\frac{2}{(z-2)+2 K}=\frac{2}{z-2(1-K)}
\end{aligned}
$$

For $K=0$,

$$
Q(s)=\frac{2}{s-2} \quad \text { and } \quad Q(z)=\frac{2}{z-2},
$$

as shown in Figures S25.1-2 and S25.1-3, respectively.

Figure S25.1-2

Figure S25.1-3

For $K=-1$,

$$
Q(s)=\frac{2}{s-4} \quad \text { and } \quad Q(z)=\frac{2}{z-4}
$$

as shown in Figures S25.1-4 and S25.1-5, respectively.

For $K=1$,

$$
Q(s)=\frac{2}{s} \quad \text { and } \quad Q(z)=\frac{2}{z}
$$

as shown in Figures S25.1-6 and S25.1-7, respectively.

Figure S25.1-6

Figure S25.1-7
(c) $Q(s)=\frac{2}{s-2(1-K)}$

The pole is located at $s=2(1-K)$, as shown in Figure S25.1-8.

Figure S25.1-8
Hence, the locus of the pole is the line $\operatorname{Re}\{s\}=0$. Similarly, for

$$
Q(z)=\frac{2}{z-2(1-K)},
$$

the locus of the pole is also the line $\operatorname{Re}\{z\}=0$, shown in Figure S25.1-9.

Figure S25.1-9
The root location decreases as K moves to infinity and increases as K moves to negative infinity.
(d) $Q(s)=\frac{2}{s-2(1-K)}$

The system is stable for $2(1-K)<0$, or $K>1$.

$$
Q(z)=\frac{2}{z-2(1-K)}
$$

The system is stable for $-1<2(1-K)<1$, or $\frac{1}{2}<K<\frac{3}{2}$.

We use Problem P25.1.
(a) (i) $\frac{Y(s)}{X(s)}=\frac{H(s)}{1+G(s) H(s)}$
(ii)

$$
E(s)[1+H(s) G(s)]=X(s),
$$

$$
\begin{aligned}
E(s) & =X(s)-R(s) \\
& =X(s)-Y(s) G(s) \\
& =X(s)-E(s) H(s) G(s), \\
G(s)] & =X(s), \\
\frac{E(s)}{X(s)} & =\frac{1}{1+H(s) G(s)}
\end{aligned}
$$

(iii) $\frac{Y(s)}{E(s)}=H(s)$
(iv) $\frac{Y(s)}{R(s)}=\frac{1}{G(s)}$
(b) $W(z)=X(z) \frac{H_{1}(z)}{1+G(z) H_{1}(z)}$,
$Y(z)=W(z)+X(z) H_{0}(z)$,
$Y(z)=\frac{X(z) H_{1}(z)}{1+G(z) H_{1}(z)}+X(z) H_{0}(z)$
Thus,

$$
\frac{Y(z)}{X(z)}=\frac{H_{1}(z)}{1+G(z) H_{1}(z)}+H_{0}(z)
$$

(c) $\frac{Y(s)}{W(s)}=\frac{H_{1}(s)}{1+G_{1}(s) H(s)}$, as shown in Figure S25.2.

Figure S25.2

$$
\begin{aligned}
\frac{Y(s)}{X(s)} & =\frac{\frac{H_{1}(s) H_{2}(s)}{1+G_{1}(s) H_{1}(s)}}{1+\frac{G_{2}(s) H_{1}(s) H_{2}(s)}{1+G_{1}(s) H_{1}(s)}} \\
& =\frac{H_{1}(s) H_{2}(s)}{1+G_{1}(s) H_{1}(s)+G_{2}(s) H_{1}(s) H_{2}(s)}
\end{aligned}
$$

S25.3
(a)

Figure S25.3-1

Figure S25.3-2
(b) From the frequency response in part (a), clearly system 1 tends to make the response more constant and system 2 tends to resemble the inverse of $G(j \omega)$.

S25.4
For the system in Figure S25.4-1, we denote the closed-loop system function by

$$
V=\frac{H}{1+G H}
$$

Figure S25.4-1
(a) $V(s)=\frac{\frac{1}{(s+1)(s+3)}}{1+\frac{1}{(s+1)(s+3)}}=\frac{1}{(s+1)(s+3)+1}$

$$
=\frac{1}{s^{2}+4 s+4}=\frac{1}{(s+2)^{2}}
$$

Therefore,

$$
v(t)=t e^{-2 t} u(t)
$$

(b) $V(s)=\frac{\frac{1}{s+3}}{1+\left(\frac{1}{s+3}\right)(s+1)}=\frac{1}{(s+3)+(s+1)}$

$$
=\frac{1}{2 s+4}=\frac{1}{2} \frac{1}{s+2}
$$

In this case,

$$
v(t)=\frac{1}{2} e^{-2 t} u(t)
$$

(c) The system function $G(s)=e^{-s / 3}$ corresponds to a delay of $\frac{1}{3}$, i.e., the feedback system of Figure P25.4(a) becomes that shown in Figure S25.4-2.

Figure S25.4-2
We can now recursively obtain the impulse response by inspection. With $x(t)=\delta(t)$,

$$
\begin{aligned}
y(t) & =\frac{1}{2} \delta(t)-\frac{1}{2}\left[\frac{1}{2} \delta\left(t-\frac{1}{3}\right)\right]+\frac{1}{2}\left[\frac{1}{4} \delta\left(t-\frac{2}{3}\right)\right]-\cdots \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} \delta\left(t-\frac{n}{3}\right)
\end{aligned}
$$

(d) $V(z)=\frac{\frac{z^{-1}}{1-\frac{1}{2} z^{-1}}}{1+\left(\frac{z^{-1}}{1-\frac{1}{2} z^{-1}}\right)\left(\frac{2}{3}-\frac{1}{6} z^{-1}\right)}$

$$
=\frac{z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)+\left(\frac{2}{3} z^{-1}-\frac{1}{6} z^{-2}\right)}
$$

$$
=\frac{z^{-1}}{1+\frac{1}{6} z^{-1}-\frac{1}{6} z^{-2}}
$$

$$
=\frac{z^{-1}}{\left(1-\frac{1}{3} z^{-1}\right)\left(1+\frac{1}{2} z^{-1}\right)}
$$

$$
=\frac{\frac{6}{5}}{1-\frac{1}{3} z^{-1}}-\frac{\frac{6}{5}}{1+\frac{1}{2} z^{-1}}
$$

Therefore,
$v[n]=\frac{6}{5}\left(\left(\frac{1}{3}\right)^{n} u[n]-\left(-\frac{1}{2}\right)^{n} u[n]\right]$
(e) $V(z)=\frac{H(z)}{1+H(z) G(z)}=\frac{\frac{2}{3}-\frac{1}{6} z^{-1}}{1+\left(\frac{2}{3}-\frac{1}{6} z^{-1}\right)\left(\frac{z^{-1}}{1-\frac{1}{2} z^{-1}}\right)}$

$$
\begin{aligned}
& =\frac{\left(\frac{2}{3}-\frac{1}{6} z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)+\left(\frac{2}{3}-\frac{1}{6} z^{-1}\right) z^{-1}} \\
& =\frac{\frac{2}{3}-\frac{2}{3} z^{-1}+\frac{1}{12} z^{-2}}{1+\frac{1}{6} z^{-1}-\frac{1}{6} z^{-2}}
\end{aligned}
$$

Thus,

$$
v[n]=\frac{2}{3} \tilde{v}[n+1]-\frac{2}{3} \tilde{v}[n]+\frac{1}{12} \tilde{v}[n-1]
$$

where $\tilde{v}[n]$ is $v[n]$ in part (d).

Solutions to
 Optional Problems

S25.5

$$
\begin{equation*}
y(t)=K_{2} w(t)+K_{1} K_{2} v(t) \tag{S25.5-1}
\end{equation*}
$$

By taking the transform of eq. (S25.5-1), we have

$$
Y(s)=K_{2} W(s)+K_{1} K_{2} V(s)
$$

Also

$$
V(s)=X(s)+\frac{s}{s+\alpha} Y(s)
$$

Therefore,

$$
\begin{aligned}
Y(s) & =K_{2} W(s)+K_{1} K_{2}\left[X(s)+\frac{s}{s+\alpha} Y(s)\right] \\
Y(s)\left(1-\frac{K_{1} K_{2} s}{s+\alpha}\right) & =K_{2} W(s)+K_{1} K_{2} X(s)
\end{aligned}
$$

and

$$
\begin{aligned}
Y(s) & =\frac{K_{2} W(s)+K_{1} K_{2} X(s)}{1-\frac{K_{1} K_{2} s}{s+\alpha}} \\
& =\frac{(s+\alpha)\left[K_{2} W(s)+K_{1} K_{2} X(s)\right]}{\left(1-K_{1} K_{2}\right) s+\alpha}
\end{aligned}
$$

S25.6
(a) The system function of the system given in Figure P25.6 must be determined first. So we write down the difference equation

$$
y[n]=x[n]+y[n-1]+4 y[n-2]
$$

Taking the z-transform of the equation, we have

$$
Y(z)\left(1-z^{-1}-4 z^{-2}\right)=X(z), \quad \text { or } \quad H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-z^{-1}-4 z^{-2}}
$$

The poles of this system are located at

$$
z^{2}-z-4=0, \quad \text { or } \quad z=\frac{1}{2} \pm \frac{\sqrt{17}}{2}
$$

Since $|z|>1$ for at least one pole the system is unstable.
(b) With closed-loop feedback, the difference equation is

$$
y[n]=x_{e}[n]-K y[n-1]+y[n-1]+4 y[n-2]
$$

Thus,

$$
H(z)=\frac{z^{2}}{z^{2}+(K-1) z-4}
$$

The poles are now located at

$$
z=\frac{-(K-1) \pm \sqrt{(K-1)^{2}+16}}{2}
$$

Note that the roots are purely real because the term inside the square root is always positive. For $z=1$,

$$
\begin{aligned}
1+\frac{K}{2}-\frac{1}{2} & = \pm \frac{\sqrt{(K-1)^{2}+16}}{2} \\
K+1 & = \pm \sqrt{(K-1)^{2}+16}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
K^{2}+2 K+1 & =K^{2}-2 K+17, \\
4 K & =16, \quad \text { or } \quad K=4
\end{aligned}
$$

We can also calculate \boldsymbol{z}_{2} :

$$
z_{2}=-4
$$

Similarly, $z_{1}=-1, z_{2}=4$ for $K=-2$. Observe the root locus in Figure S25.6-1.

Figure S25.6-1
Observe that if one of the poles is inside $|z| \leq 1$, the other is outside. Hence, the system is unstable for all values of K.
(c) The difference equation can be written as

$$
y[n]=x_{e}[n]+y[n-1]+(4-K) y[n-2]
$$

Therefore,

$$
H(z)=\frac{z^{2}}{z^{2}-z+(K-4)}
$$

In this case, the poles are located at

$$
z=\frac{1}{2} \pm \frac{\sqrt{17-4 K}}{2}
$$

For a stable system, we want

$$
\begin{aligned}
& |z|<1 \\
& |z|=\left|\frac{1}{2} \pm \frac{\sqrt{17-4 K}}{2}\right|
\end{aligned}
$$

If we set $17-4 K>0$, then

$$
\left|\frac{1}{2} \pm \frac{\sqrt{17-4 K}}{2}\right|<1
$$

or

$$
\begin{array}{r}
\pm \frac{\sqrt{17-4 K}}{2}<\frac{1}{2} \\
17-4 K<1 \\
K>4
\end{array}
$$

Now suppose $17-4 K<0$. Then

$$
\left|\frac{1}{2} \pm j \sqrt{\left|\frac{17}{4}-K\right|}\right|<1 \quad \text { or } \quad \frac{17}{4}-K>-\frac{3}{4}, ~ \begin{aligned}
& \\
&-K>-\frac{20}{4} \\
& K<5
\end{aligned}
$$

Thus, for K in the range $4<K<5$, we have a stable system. The root locus is shown in Figure S25.6-2.

(a) The dc gain of the amplifier is $|H(0)|=|G|$.
(b) $h(t)=G a e^{-a t} u(t)$. Therefore, the time constant is $1 / a$.
(c) $\left|H\left(j \omega_{c}\right)\right|^{2}=\frac{G^{2} a^{2}}{a^{2}+\omega_{c}^{2}}=\frac{1}{2} G^{2}$

Thus $\omega_{c}= \pm a$. Hence the bandwidth is a.
(d) The closed-loop transfer function is

$$
V(s)=\frac{\frac{G a}{s+a}}{1+\frac{K G a}{s+a}}=\frac{G a}{(1+K G) a+s}
$$

From part (a), the time constant is

$$
\frac{1}{(1+K G) a}
$$

From part (c), the bandwidth is $(1+K G) a$. From part (a), the dc gain is

$$
\left|\frac{G}{1+K G}\right|
$$

(e) We require $(G K+1) a=2 a$. Hence, $K=1 / G$. So the bandwidth becomes $2 a$. The time constant is $1 /(2 a)$, and $|H(0)|=|G / 2|$, the dc gain.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

