
24 Butterworth Filters 
Solutions to 
Recommended Problems 
S24.1 

(a) 	For N = 5 and w = (27)1 kHz, IB(jw)12 is given by 

1
IB(jw)1 2 = 10 

1 + 	(2000 r) 

(b) 	The denominator of B(s)B(-s) is set to zero. Thus 

0 = 1 + (2000)1O, or s = (-1) 1 j20001r 

Expressing -1 as e' andj as ej/ 2, we find that the poles of B(s)B(-s) are 

s = 	 2)+<.2000ei[(x/10 +<x/ 5isa, 

as shown in Figure S24.1-1. 
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Figure S24.1-1 

(c) 	 For B(s) to be stable and causal, its poles must be in the left half-plane, as 
shown in Figure S24.1-2. 
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(d) Since the total number of poles must be as shown in part (b), the poles 
B(-s) must be given as in Figure S24.1-3. 
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S24.2 

(a) 	When there is no aliasing, the relation in the frequency domain between the 
continuous-time filter and the discrete-time filter corresponding to impulse 
invariance is 

H(eJ.) = 
T
1HH. 

\T 
- Y |1 |1 7r 

Thus, there is an amplitude scaling of T and a frequency scaling given by 

Q = oT, |1 1 !ir, Iw|I rT 
The required transfer function can be found by reflecting TH(e'u) through the 
preceding transformation, as shown in Figure S24.2-1. 
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Figure S24.2-1 
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Since the relation between 0 and wis linear, the shape of the frequency response 
is preserved. 

(b) 	For the bilinear transformation, there is no amplitude scaling of the frequency 
response; however, there is the following frequency transformation: 

wT9=2arctan (-2) 
As in part (a), we can find H(jw) by reflecting H(ej") through the preceding 
frequency transformation, shown in Figure S24.2-2. 

Because of the nonlinear relation between Q and w, H,(jo) does not exhibit a 
linear slope as H(e'") does. 

(c) 	 We redraw the transformation of part (a) for the new H(e'0 ) in Figure S24.2-3. 
As in part (a), the shape of the frequency response is preserved. 
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We redraw the transformation of part (b) for the new H(ej") in Figure S24.2-4. 
Unlike part (b), the general shape of H(eju) is preserved because of the piece
wise-constant nature of H(ej"). 
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S24.3 

(a) Using the bilinear transformation, we get 

1 -

(b) 	 Since H(s) has a pole at -a, we need a > 0 for H(s) to be stable and causal. 

(c) 	 Figure S24.3 contains a plot of (1 - a)/(1 + a), the pole location of H(z), ver
sus a. 

1 - a 
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Figure S24.3 

We see that for a > 0, (1 - a)/(1 + a) is between -- 1 and 1. Since the only pole 
of H(z) occurs at z = (1 - a)/(1 + a), H(z) must be stable whenever H(s) is 
stable, assuming that H(z) represents a causal h[n]. 

S24.4 

(a) 	For T = 1 and the impulse invariance method, B(jw) must satisfy 

1 IB(jw)|1 0.8 for 0 w ,
4, 

0.2 IB(jw)|1 0 for 37 fCV 

Therefore, if we ignore aliasing, 

B (j =_ 1)2N 

B (ij) 1 + j/4 
4 

_ 2N= (0. 2) 
1j3r/4

1+ .'W 
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(b) 	 For T = 1 and the bilinear transformation, B(jw) must satisfy 

1 	 1B(jo) I 0.8, 0 : o : 2 tan,
8) 

0.2 1B(ji) 0, 2 tan - O
8 

Therefore, 

12= (0.8)2, 
1+ j2 tan (w/8)SJwc 

1 2= (0.2)2 

1+ j2 tan (3-/8) 

S24.5 

(a) 	The relation between 0 and w is given by Q = wT, where T = 1/15000. Thus, 

1 	 - IH(e 0 )|1 0.9 for 0 : - 2wr
5 

0.1 - IH(e'")|1 0 for 3 -x s7
5 

Note that while Hd(jw) was restricted to be between 0.1 and 0 for all o larger 
than 2r(4 500), we can specify H(eja) only up to Q = x. For values higher than 
w, we rely on some anti-aliasing filter to do the attenuation for us. 

(b) 	Assuming no aliasing, 

H(e) = G j 

Therefore, 

|G(jw)|1 0 273 	 1 2.7, s o 
15, 

7w T
0.3 1 0, o < IG(jw) 1 s

5 3 

(c) 	 The relation between o and Qis given by Q = 2 arctan (w). Thus, 

T
1 	 IG(jo)I - 0.9, 0 s s tan ,

5) 
37r

0.1 - IG(jw)I 0, tan -5 o < oo
10 

(d) 	 If T changes, then the specifications for G(jw) will change for either the impulse 
variance method or the bilinear transformation. However, they will change in 
such a way that the resulting discrete-time filter H(e'") will not change. Thus,
He(jo) will also not change. 
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Solutions to 
Optional Problems 
S24.6 

(a) 	We first assume that a B(s) exists such that the filter specifications are met 
exactly. Since


1

IB(jw)12 

1+ 

we require that


1

IB(j27r)1 2 = = (10-0.05)2 = 10-0, 

1 

IB(j3ir)1 2 = = 10-15 

Substituting N = 5.88 and co, = 7.047, we see that the preceding equations are 
satisfied. 

(b) Since we know that N = 6, we use the first equation to solve for we: 

10- = 1 1 

1 + 

Solving for co,, we find that w, = 7.032. The frequency response at ( = 0.31 is 
given by 

_1 

IB(j3)1 2 - 12 = 0.02890, 

1 + 7.032 

20logo0 B(j3w)| = -15.4dB 

(c) 	 If we picked N = 5, there would be no value of we that would lead to a Butter-
worth filter that would meet the filter specifications. 

S24.7 

We require an Hd(z) such that 

0 20 logio|Hd(eO)j -0.75, 0 s Q s 0.2613w, 
-20 dB 20 logio1 Hd(e)|), 0.4018w : Q ! w 

We will for the moment assume that the specifications can be met exactly. Let 9, be 
the frequency where 

20 logI|Hd(eja,)| = -0.75, or |Hd(es0 ")12 = 10-0075 

Similarly, we define Q, as the frequency where 

20 log10 = -20, or |Hd(e "f)|2 = 10-2oHd(eS')| 
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Using T = 1, we find the specifications for the continuous-time filter Ha(jo) as 

IHa(jo,)| 2 = 10 -.075 IH(jW,)|2 = 10 2, 

where 

o, = 2 tan = 2 tan =2 0.8703,
22


o, = 2 tan -= 2 tan (0418w= 1.4617
2 2 

For the specification to be met exactly, we need N and co such that 
j.732N 2N

/jO.8703 	 (jl.46171 + . = 1000" and 1 + . 2=10 =102 

Solving for N, we find that N = 6.04. Since N is so close to 6 we may relax the 
specifications slightly and choose N = 6. Alternatively, we pick N = 7. Meeting the 
passband specification exactly, we choose w,such that 

1 + (O.=03)14 100.075, or we = 0.9805 
jWc 

The continuous-time filter H,(s) is then specified 	by 

1 
H(s)H(-s) = 

1 + ( s 

The poles are drawn in Figure S24.7. 

We associate with Ha(s) the poles that are on the left half-plane, as follows: 

s, = -0.9805, S2 = 0.9805e"/ 14, S3 = s*, 
14
S4 = 0.9805e' 0 "'/ S5 = S*, S6 = 0.9805e 2' /" S 7 = s* 

Ha(s) is given by 

Ha(S) = (0.9805)7 
7


f (s - s) 
i= 1 
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Hd(z) can be obtained by the substitution 

Hd(Z) = H.(S)I|,= 2 1( _z-1)_(1+z ) 

S24.8 

(a) Assuming no aliasing, Hd(e'u) is related to Hb(jw) by 

Hdtej") = $o j , T = 2 

Thus, the specifications for Hb(jw) are given by 

2 IHb(jw)I 2a, 0 - w - 0.2r/2, 
2b I 0, 0.37r/2 w|Hb(jw)| 

(b) Substituting 

2 .2c 
H3(jw) = H 33 

for o = 0.27r/ 2 , we have 

But 

H =.2r3a 

Thus 
0.27r 23a=2

ft(3 2 33a=2a 

Similarly, 

j =2b(.3r) 

Thus, A,(s) satisfies the filter specifications for Hb(jw) exactly. 

(c) H(ej") is given by 

f(e") = - 1 [j (11 r) 

But ft,(jo) = H, (jp,). Therefore, 

1 02 .j2 (Q 2x7k 
ft(e ) 

ju 
= 2("= E 

-
-

H03 3 2 2 

1 00 [ ( 21rk) ej 
k= 3 3 

S24.9 

(a) Using properties of the Laplace transform, we have 

1 
sY(s) = X(s), or H(s) 

s 
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(b) 	 Here h is given by T, a is given by x[(n - 1)T], and b is given by x(nT). There
fore, the area is given by 

(a + 	b h = T[x((n - 1)T) + x(nT)] = An 

(c) 	 From the definition of 9[n], we find that 
n-i 

P[n - 11 = Z A, 
k=-o 

Subtracting f[n -	 1] from P[n], we find 
n n-1 

9[n) - [n - 11= Ak- A= A. 
k= -ok= -- o 

Therefore, 

P[n] = y[n -1] + 	An. 

(d) 	 From the answer to part (a), we substitute for An, yielding 

9[n] = P[n - 11 + T [x((n - 1)T) + x(nT)]
2 

= P[n - 1] + {[n - 1] + &[n]} 

(e) 	 Using z-transforms, we find 

f(z) = z -f(z) + T [z'i(z) + I(z)], 

H(z) =k 
X(z) -

=zT 
2 (1 

1 + z
zj 

= H(s) 
s=2 t-21/1 +z-1> 
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