24 Butterworth Filters

Solutions to
 Recommended Problems

S24.1
(a) For $N=5$ and $\omega_{c}=(2 \pi) 1 \mathrm{kHz},|B(j \omega)|^{2}$ is given by

$$
|B(j \omega)|^{2}=\frac{1}{1+\left(\frac{j \omega}{j 2000 \pi}\right)^{10}}
$$

(b) The denominator of $B(s) B(-s)$ is set to zero. Thus

$$
0=1+\left(\frac{s}{j 2000 \pi}\right)^{10}, \quad \text { or } \quad s=(-1)^{1 / 10} j 2000 \pi
$$

Expressing -1 as $e^{j \pi}$ and j as $e^{j \pi / 2}$, we find that the poles of $B(s) B(-s)$ are

$$
S=2000 \pi e^{j[(\pi / 10)+(\pi / 2)+(\pi k / 5)]}
$$

as shown in Figure S24.1-1.

Figure S24.1-1
(c) For $B(s)$ to be stable and causal, its poles must be in the left half-plane, as shown in Figure S24.1-2.

Figure S24.1-2
(d) Since the total number of poles must be as shown in part (b), the poles of $B(-s)$ must be given as in Figure S24.1-3.

S24.2
(a) When there is no aliasing, the relation in the frequency domain between the continuous-time filter and the discrete-time filter corresponding to impulse invariance is

$$
H\left(e^{j \Omega}\right)=\frac{1}{T} H_{a}\left(j \frac{\Omega}{T}\right), \quad|\Omega| \leq \pi
$$

Thus, there is an amplitude scaling of T and a frequency scaling given by

$$
\Omega=\omega T, \quad|\Omega| \leq \pi, \quad|\omega| \leq \pi T
$$

The required transfer function can be found by reflecting $\operatorname{TH}\left(e^{j \Omega}\right)$ through the preceding transformation, as shown in Figure S24.2-1.

Figure S24.2-1

Since the relation between Ω and ω is linear, the shape of the frequency response is preserved.
(b) For the bilinear transformation, there is no amplitude scaling of the frequency response; however, there is the following frequency transformation:

$$
\Omega=2 \arctan \left(\frac{\omega T}{2}\right)
$$

As in part (a), we can find $H_{a}(j \omega)$ by reflecting $H\left(e^{j \Omega}\right)$ through the preceding frequency transformation, shown in Figure S24.2-2.

Because of the nonlinear relation between Ω and $\omega, H_{a}(j \omega)$ does not exhibit a linear slope as $H\left(e^{j \Omega}\right)$ does.
(c) We redraw the transformation of part (a) for the new $H\left(e^{j \Omega}\right)$ in Figure S24.2-3. As in part (a), the shape of the frequency response is preserved.

Figure S24.2-3
We redraw the transformation of part (b) for the new $H\left(e^{j 2}\right)$ in Figure S24.2-4. Unlike part (b), the general shape of $H\left(e^{j \Omega}\right)$ is preserved because of the piece-wise-constant nature of $H\left(e^{j \Omega}\right)$.

Figure S24.2-4
(a) Using the bilinear transformation, we get

$$
H(z)=\frac{1}{a+\frac{1-z^{-1}}{1+z^{-1}}}=\frac{1+z^{-1}}{a+1+z^{-1}(a-1)}=\frac{\frac{1+z^{-1}}{1+a}}{1-\left(\frac{1-a}{1+a}\right) z^{-1}}
$$

(b) Since $H(s)$ has a pole at $-a$, we need $a>0$ for $H(s)$ to be stable and causal.
(c) Figure S 24.3 contains a plot of $(1-a) /(1+a)$, the pole location of $H(z)$, versus a.

We see that for $a>0,(1-a) /(1+a)$ is between -1 and 1 . Since the only pole of $H(z)$ occurs at $z=(1-a) /(1+a), H(z)$ must be stable whenever $H(s)$ is stable, assuming that $H(z)$ represents a causal $h[n]$.
(a) For $T=1$ and the impulse invariance method, $B(j \omega)$ must satisfy

$$
\begin{aligned}
1 \geq|B(j \omega)| \geq 0.8 & \text { for } 0 \leq \omega \leq \frac{\pi}{4} \\
0.2 \geq|B(j \omega)| \geq 0 & \text { for } \frac{3 \pi}{4} \leq \omega
\end{aligned}
$$

Therefore, if we ignore aliasing,

$$
\begin{aligned}
& \left|B\left(j \frac{\pi}{4}\right)\right|^{2}=\frac{1}{1+\left(\frac{j \pi / 4}{j \omega_{c}}\right)^{2 N}}=(0.8)^{2} \\
& \left|B\left(j \frac{3 \pi}{4}\right)\right|^{2}=\frac{1}{1+\left(\frac{j 3 \pi / 4}{j \omega_{c}}\right)^{2 N}}=(0.2)^{2}
\end{aligned}
$$

(b) For $T=1$ and the bilinear transformation, $B(j \omega)$ must satisfy

$$
\begin{aligned}
1 \geq|B(j \omega)| \geq 0.8, & 0 \leq \omega \leq 2 \tan \frac{\pi}{8} \\
0.2 \geq|B(j \omega)| \geq 0, & 2 \tan \frac{3 \pi}{8} \leq \omega
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{1}{1+\left[\frac{j 2 \tan (\pi / 8)}{j \omega_{c}}\right]^{2 N}}=(0.8)^{2} \\
\frac{1}{1+\left[\frac{j 2 \tan (3 \pi / 8)}{j \omega_{c}}\right]^{2 N}}=(0.2)^{2}
\end{gathered}
$$

(a) The relation between Ω and ω is given by $\Omega=\omega T$, where $T=1 / 15000$. Thus,

$$
\begin{array}{cc}
1 \geq\left|H\left(e^{j \Omega}\right)\right| \geq 0.9 & \text { for } 0 \leq \Omega \leq \frac{2 \pi}{5} \\
0.1 \geq\left|H\left(e^{j \Omega}\right)\right| \geq 0 & \text { for } \frac{3 \pi}{5} \leq \Omega \leq \pi
\end{array}
$$

Note that while $H_{d}(j \omega)$ was restricted to be between 0.1 and 0 for all ω larger than $2 \pi(4500)$, we can specify $H\left(e^{j \Omega}\right)$ only up to $\Omega=\pi$. For values higher than π, we rely on some anti-aliasing filter to do the attenuation for us.
(b) Assuming no aliasing,

$$
H\left(e^{j \Omega}\right)=\frac{1}{T} G\left(j \frac{\Omega}{T}\right)
$$

Therefore,

$$
\begin{aligned}
3 \geq|G(j \omega)| \geq 2.7, & 0 \leq \omega \leq \frac{2 \pi}{15} \\
0.3 \geq|G(j \omega)| \geq 0, & \frac{\pi}{5} \leq \omega<\frac{\pi}{3}
\end{aligned}
$$

(c) The relation between ω and Ω is given by $\Omega=2 \arctan (\omega)$. Thus,

$$
\begin{aligned}
1 \geq|G(j \omega)| \geq 0.9, & 0 \leq \omega \leq \tan \frac{\pi}{5} \\
0.1 \geq|G(j \omega)| \geq 0, & \tan \frac{3 \pi}{10} \leq \omega<\infty
\end{aligned}
$$

(d) If T changes, then the specifications for $G(j \omega)$ will change for either the impulse variance method or the bilinear transformation. However, they will change in such a way that the resulting discrete-time filter $H\left(e^{j \Omega}\right)$ will not change. Thus, $H_{c}(j \omega)$ will also not change.

Solutions to Optional Problems

S24.6

(a) We first assume that a $B(s)$ exists such that the filter specifications are met exactly. Since

$$
|B(j \omega)|^{2}=\frac{1}{1+\left(\frac{j \omega}{j \omega_{c}}\right)^{2 N}}
$$

we require that

$$
\begin{aligned}
|B(j 2 \pi)|^{2} & =\frac{1}{1+\left(\frac{j 2 \pi}{j \omega_{c}}\right)^{2 N}}=\left(10^{-0.05}\right)^{2}=10^{-0.1} \\
|B(j 3 \pi)|^{2} & =\frac{1}{1+\left(\frac{j 3 \pi}{j \omega_{c}}\right)^{2 N}}=10^{-1.5}
\end{aligned}
$$

Substituting $N=5.88$ and $\omega_{c}=7.047$, we see that the preceding equations are satisfied.
(b) Since we know that $N=6$, we use the first equation to solve for ω_{c} :

$$
10^{-0.1}=\frac{1}{1+\left(\frac{j 2 \pi}{j \omega_{c}}\right)^{12}}
$$

Solving for ω_{c}, we find that $\omega_{c}=7.032$. The frequency response at $\omega=0.3 \pi$ is given by

$$
|B(j 3 \pi)|^{2}=\frac{1}{1+\left(\frac{j 3 \pi}{j 7.032}\right)^{12}}=0.02890
$$

$20 \log _{10}|B(j 3 \pi)|=-15.4 \mathrm{~dB}$
(c) If we picked $N=5$, there would be $n o$ value of ω_{c} that would lead to a Butterworth filter that would meet the filter specifications.

S24.7

We require an $H_{d}(z)$ such that

$$
\begin{array}{rlr}
0 & \geq 20 \log _{10}\left|H_{d}\left(e^{j \Omega}\right)\right| \geq-0.75, & 0 \leq \Omega \leq 0.2613 \pi \\
-20 \mathrm{~dB} & \geq 20 \log _{10}\left|H_{d}\left(e^{j \Omega}\right)\right|, & 0.4018 \pi \leq \Omega \leq \pi
\end{array}
$$

We will for the moment assume that the specifications can be met exactly. Let Ω_{p} be the frequency where

$$
20 \log _{10}\left|H_{d}\left(e^{j p_{p}}\right)\right|=-0.75, \quad \text { or } \quad\left|H_{d}\left(e^{j 夕_{p}}\right)\right|^{2}=10^{-0.075}
$$

Similarly, we define Ω_{s} as the frequency where

$$
20 \log _{10}\left|H_{d}\left(e^{j \Omega_{s}}\right)\right|=-20, \quad \text { or } \quad\left|H_{d}\left(e^{j \Omega_{s}}\right)\right|^{2}=10^{-2}
$$

Using $T=1$, we find the specifications for the continuous-time filter $H_{a}(j \omega)$ as

$$
\left|H_{a}\left(j \omega_{p}\right)\right|^{2}=10^{-0.075}, \quad\left|H_{a}\left(j \omega_{s}\right)\right|^{2}=10^{-2}
$$

where

$$
\begin{aligned}
& \omega_{p}=2 \tan \frac{\Omega_{p}}{2}=2 \tan \left(\frac{0.2613 \pi}{2}\right)=0.8703 \\
& \omega_{s}=2 \tan \frac{\Omega_{s}}{2}=2 \tan \left(\frac{0.4018 \pi}{2}\right)=1.4617
\end{aligned}
$$

For the specification to be met exactly, we need N and ω_{c} such that

$$
1+\left(\frac{j 0.8703}{j \omega_{c}}\right)^{2 N}=10^{0.075} \text { and } 1+\left(\frac{j 1.4617}{j \omega_{c}}\right)^{2 N}=10^{2}
$$

Solving for N, we find that $N=6.04$. Since N is so close to 6 we may relax the specifications slightly and choose $N=6$. Alternatively, we pick $N=7$. Meeting the passband specification exactly, we choose ω_{c} such that

$$
1+\left(\frac{j 0.8703}{j \omega_{c}}\right)^{14}=10^{0.075}, \quad \text { or } \quad \omega_{c}=0.9805
$$

The continuous-time filter $H_{a}(s)$ is then specified by

$$
H_{a}(s) H_{a}(-s)=\frac{1}{1+\left(\frac{s}{j 0.9805}\right)^{14}}
$$

The poles are drawn in Figure S24.7.

We associate with $H_{a}(s)$ the poles that are on the left half-plane, as follows:

$$
\begin{aligned}
& s_{1}=-0.9805, \quad s_{2}=0.9805 e^{j 8 \pi / 14}, \quad s_{3}=s_{2}^{*}, \\
& s_{4}=0.9805 e^{j 10 \pi / 14}, \quad s_{5}=s_{4}^{*}, \quad s_{6}=0.9805 e^{j 12 \pi / 14}, \quad s_{7}=s_{6}^{*}
\end{aligned}
$$

$H_{a}(s)$ is given by

$$
H_{a}(s)=\frac{(0.9805)^{7}}{\prod_{i=1}^{7}\left(s-s_{i}\right)}
$$

$H_{d}(z)$ can be obtained by the substitution

$$
H_{d}(z)=\left.H_{a}(s)\right|_{s=2\left\{\left(1-z^{-1}\right) /\left(1+z^{-1}\right)\right]}
$$

(a) Assuming no aliasing, $H_{d}\left(e^{j \Omega}\right)$ is related to $\hat{H}_{b}(j \omega)$ by

$$
H_{d}\left(e^{j \Omega}\right)=\frac{1}{T} \hat{H}_{b}\left(j \frac{\Omega}{T}\right), \quad T=2
$$

Thus, the specifications for $\hat{H}_{b}(j \omega)$ are given by

$$
\begin{array}{rll}
2 & \geq\left|\hat{H}_{b}(j \omega)\right| \geq 2 a, & 0 \leq \omega \leq 0.2 \pi / 2 \\
2 b & \geq\left|\hat{H}_{b}(j \omega)\right| \geq 0, & 0.3 \pi / 2 \leq \omega
\end{array}
$$

(b) Substituting

$$
\hat{H}_{s}(j \omega)=\frac{2}{3} H_{s}\left(j \frac{2 \omega}{3}\right)
$$

for $\omega=0.2 \pi / 2$, we have

$$
\left|\hat{H}_{s}\left(j \frac{0.2 \pi}{2}\right)\right|=\frac{2}{3}\left|H_{s}\left(j \frac{2}{3} \frac{0.2 \pi}{2}\right)\right|=\frac{2}{3}\left|H_{s}\left(j \frac{0.2 \pi}{3}\right)\right|
$$

But

$$
\left|H_{s}\left(j \frac{0.2 \pi}{3}\right)\right|=3 a
$$

Thus

$$
\left|\hat{H}_{s}\left(j \frac{0.2 \pi}{2}\right)\right|=\frac{2}{3} 3 a=2 a
$$

Similarly,

$$
\left|\hat{H}_{s}\left(j \frac{0.3 \pi}{2}\right)\right|=2 b
$$

Thus, $\hat{H}_{s}(s)$ satisfies the filter specifications for $H_{b}(j \omega)$ exactly.
(c) $\hat{H}\left(e^{j \Omega}\right)$ is given by

$$
\hat{H}\left(e^{j \Omega}\right)=\frac{1}{2} \sum_{k=-\infty}^{\infty} \hat{H}_{s}\left[j\left(\frac{\Omega}{2}-\frac{2 \pi k}{2}\right)\right]
$$

But $\hat{H}_{s}(j \omega)=\frac{2}{3} H_{s}\left(j_{3}^{2} \omega\right)$. Therefore,

$$
\begin{aligned}
\hat{H}\left(e^{j \Omega}\right) & =\frac{1}{2} \sum_{k=-\infty}^{\infty} \frac{2}{3} H_{s}\left[j \frac{2}{3}\left(\frac{\Omega}{2}-\frac{2 \pi k}{2}\right)\right] \\
& =\frac{1}{3} \sum_{k=-\infty}^{\infty} H_{s}\left[j\left(\frac{\Omega}{3}-\frac{2 \pi k}{3}\right)\right]=H\left(e^{j \Omega}\right)
\end{aligned}
$$

(a) Using properties of the Laplace transform, we have

$$
s Y(s)=X(s), \quad \text { or } \quad H(s)=\frac{1}{s}
$$

(b) Here h is given by T, a is given by $x[(n-1) T]$, and b is given by $x(n T)$. Therefore, the area is given by

$$
\left(\frac{a+b}{2}\right) h=\frac{T}{2}[x((n-1) T)+x(n T)]=A_{n}
$$

(c) From the definition of $\hat{y}[n]$, we find that

$$
\hat{y}[n-1]=\sum_{k=-\infty}^{n-1} A_{k}
$$

Subtracting $\hat{y}[n-1]$ from $\hat{y}[n]$, we find

$$
\hat{y}[n]-\hat{y}[n-1]=\sum_{k=-\infty}^{n} A_{k}-\sum_{k=-\infty}^{n-1} A_{k}=A_{n}
$$

Therefore,

$$
\hat{y}[n]=\hat{y}[n-1]+A_{n} .
$$

(d) From the answer to part (a), we substitute for A_{n}, yielding

$$
\begin{aligned}
\hat{y}[n] & =\hat{y}[n-1]+\frac{T}{2}[x((n-1) T)+x(n T)] \\
& =\hat{y}[n-1]+\frac{T}{2}\{\hat{x}[n-1]+\hat{x}[n]\}
\end{aligned}
$$

(e) Using z-transforms, we find

$$
\begin{aligned}
\hat{Y}(z) & =z^{-1} \hat{Y}(z)+\frac{T}{2}\left[z^{-1} \hat{X}(z)+\hat{X}(z)\right] \\
H(z) & =\frac{\hat{Y}(z)}{\hat{X}(z)}=\frac{T}{2}\left(\frac{1+z^{-1}}{1-z^{-1}}\right)=\left.H(s)\right|_{s=(2 / T)\left(\left(1-z^{-1}\right) /\left(1+z^{-1}\right)\right]}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

