20 The Laplace Transform

Recommended
 Problems

P20.1

Consider the signal $x(t)=3 e^{2 t} u(t)+4 e^{3 t} u(t)$.
(a) Does the Fourier transform of this signal converge?
(b) For which of the following values of σ does the Fourier transform of $x(t) e^{-\sigma t}$ converge?
(i) $\sigma=1$
(ii) $\sigma=2.5$
(iii) $\sigma=3.5$
(c) Determine the Laplace transform $X(s)$ of $x(t)$. Sketch the location of the poles and zeros of $X(s)$ and the ROC.

P20.2
Determine the Laplace transform, pole and zero locations, and associated ROC for each of the following time functions.
(a) $e^{-a t} u(t), \quad a>0$
(b) $e^{-a t} u(t), \quad a<0$
(c) $-e^{-a t} u(-t), \quad a<0$

P20.3
Shown in Figures P20.3-1 to P20.3-4 are four pole-zero plots. For each statement in Table P20.3 about the associated time function $x(t)$, fill in the table with the corresponding constraint on the ROC.
(a)

Figure P20.3-1
(b)

(c)

Figure P20.3-3
(d)

Constraint on ROC for Pole-Zero Pattern

	(a)	(b)	(c)	(d)
(i)Fourier transform of $x(t) e^{-t}$ converges				
(ii) $x(t)=0$, $t>10$				
(iii) $x(t)=0$, $t<0$				

Table P20.3

P20.4

Determine $x(t)$ for the following conditions if $X(s)$ is given by

$$
X(s)=\frac{1}{(s+1)(s+2)}
$$

(a) $x(t)$ is right-sided
(b) $x(t)$ is left-sided
(c) $x(t)$ is two-sided

P20.5
An LTI system has an impulse response $h(t)$ for which the Laplace transform $H(s)$ is

$$
H(s)=\int_{-\infty}^{+\infty} h(t) e^{-s t} d t=\frac{1}{s+1}, \quad \operatorname{Re}\{s\}>-1
$$

Determine the system output $y(t)$ for all t if the input $x(t)$ is given by

$$
x(t)=e^{-t / 2}+2 e^{-t / 3} \quad \text { for all } t
$$

(a) From the expression for the Laplace transform of $x(t)$, derive the fact that the Laplace transform of $x(t)$ is the Fourier transform of $x(t)$ weighted by an exponential.
(b) Derive the expression for the inverse Laplace transform using the Fourier transform synthesis equation.

Optional
 Problems

P20.7

Determine the time function $x(t)$ for each Laplace transform $X(s)$.
(a) $\frac{1}{s+1}, \quad \operatorname{Re}\{s\}>-1$
(b) $\frac{1}{s+1}, \quad \operatorname{Re}\{s\}<-1$
(c) $\frac{s}{s^{2}+4}, \quad \operatorname{Re}\{s\}>0$
(d) $\frac{s+1}{s^{2}+5 s+6}, \quad \operatorname{Re}\{s\}>-2$
(e) $\frac{s+1}{s^{2}+5 s+6}, \quad \operatorname{Re}\{s\}<-3$
(f) $\frac{s^{2}-s+1}{s^{2}(s-1)}, \quad 0<R e\{s\}<1$
(g) $\frac{s^{2}-s+1}{(s+1)^{2}}, \quad-1<\operatorname{Re}\{s\}$
(h) $\frac{s+1}{(s+1)^{2}+4}, \quad \operatorname{Re}\{s\}>-1$

Hint: Use the result from part (c).

P20.8
The Laplace transform $X(s)$ of a signal $x(t)$ has four poles and an unknown number of zeros. $x(t)$ is known to have an impulse at $t=0$. Determine what information, if any, this provides about the number of zeros.

P20.9

Determine the Laplace transform, pole-zero location, and associated ROC for each of the following time functions.
(a) $e^{-a t} u(t), \quad a<0$
(b) $-e^{a t} u(-t), \quad a>0$
(c) $e^{a t} u(t), \quad a>0$
(d) $e^{-a|t|}, \quad a>0$
(e) $u(t)$
(f) $\delta\left(t-t_{0}\right)$
(g) $\sum_{k=0}^{\infty} a^{k} \delta(t-k T), \quad a>0$
(h) $\cos \left(\omega_{0} t+b\right) u(t)$
(i) $\sin \left(\omega_{0} t+b\right) e^{-a t} u(t), \quad a>0$
(a) If $x(t)$ is an even time function such that $x(t)=x(-t)$, show that this requires that $X(s)=X(-s)$.
(b) If $x(t)$ is an odd time function such that $x(t)=-x(-t)$, show that $X(s)=$ $-X(-s)$.
(c) Determine which, if any, of the pole-zero plots in Figures P20.10-1 to P20.10-4 could correspond to an even time function. For those that could, indicate the required ROC.
(i)

Figure P20.10-1
(ii)

(iv)

(d) Determine which, if any, of the pole-zero plots in part (c) could correspond to an odd time function. For those that could, indicate the required ROC.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

