20 The Laplace Transform

Recommended Problems

P20.1

Consider the signal $x(t) = 3e^{2t}u(t) + 4e^{3t}u(t)$.

- (a) Does the Fourier transform of this signal converge?
- (b) For which of the following values of σ does the Fourier transform of $x(t)e^{-\sigma t}$ converge?
 - (i) $\sigma = 1$
 - (ii) $\sigma = 2.5$
 - (iii) $\sigma = 3.5$
- (c) Determine the Laplace transform X(s) of x(t). Sketch the location of the poles and zeros of X(s) and the ROC.

<u>P20.2</u>

Determine the Laplace transform, pole and zero locations, and associated ROC for each of the following time functions.

(a) $e^{-at}u(t)$, a > 0(b) $e^{-at}u(t)$, a < 0(c) $-e^{-at}u(-t)$, a < 0

P20.3

Shown in Figures P20.3-1 to P20.3-4 are four pole-zero plots. For each statement in Table P20.3 about the associated time function x(t), fill in the table with the corresponding constraint on the ROC.

Constraint on ROC for Pole-Zero Pattern

<i>x</i> (<i>t</i>)	(a)	(b)	(c)	(d)
(i) Fourier transform of $x(t)e^{-t}$ converges				
(ii) $x(t) = 0,$ t > 10				
(iii) x(t) = 0, t < 0				

Table P20.3

P20.4

Determine x(t) for the following conditions if X(s) is given by

$$X(s) = \frac{1}{(s+1)(s+2)}$$

- (a) x(t) is right-sided
- **(b)** x(t) is left-sided
- (c) x(t) is two-sided

P20.5

An LTI system has an impulse response h(t) for which the Laplace transform H(s) is

$$H(s) = \int_{-\infty}^{+\infty} h(t) e^{-st} dt = \frac{1}{s+1}, \quad Re\{s\} > -1$$

Determine the system output y(t) for all t if the input x(t) is given by

$$x(t) = e^{-t/2} + 2e^{-t/3}$$
 for all t.

P20.6

- (a) From the expression for the Laplace transform of x(t), derive the fact that the Laplace transform of x(t) is the Fourier transform of x(t) weighted by an exponential.
- (b) Derive the expression for the inverse Laplace transform using the Fourier transform synthesis equation.

Optional Problems

P20.7

Determine the time function x(t) for each Laplace transform X(s).

(a)
$$\frac{1}{s+1}$$
, $Re\{s\} > -1$
(b) $\frac{1}{s+1}$, $Re\{s\} < -1$
(c) $\frac{s}{s^2+4}$, $Re\{s\} > 0$
(d) $\frac{s+1}{s^2+5s+6}$, $Re\{s\} > -2$
(e) $\frac{s+1}{s^2+5s+6}$, $Re\{s\} < -3$
(f) $\frac{s^2-s+1}{s^2(s-1)}$, $0 < Re\{s\} < 1$
(g) $\frac{s^2-s+1}{(s+1)^2}$, $-1 < Re\{s\}$
(h) $\frac{s+1}{(s+1)^2+4}$, $Re\{s\} > -1$

Hint: Use the result from part (c).

P20.8

The Laplace transform X(s) of a signal x(t) has four poles and an unknown number of zeros. x(t) is known to have an impulse at t = 0. Determine what information, if any, this provides about the number of zeros.

P20.9

Determine the Laplace transform, pole-zero location, and associated ROC for each of the following time functions.

- (a) $e^{-at}u(t)$, a < 0
- **(b)** $-e^{at}u(-t), \quad a > 0$
- (c) $e^{at}u(t), \quad a > 0$
- (d) $e^{-a|t|}, \quad a > 0$

(e)
$$u(t)$$

(f) $\delta(t - t_0)$
(g) $\sum_{k=0}^{\infty} a^k \delta(t - kT), \quad a > 0$
(h) $\cos(\omega_0 t + b)u(t)$
(i) $\sin(\omega_0 t + b)e^{-at}u(t), \quad a > 0$

P20.10

- (a) If x(t) is an even time function such that x(t) = x(-t), show that this requires that X(s) = X(-s).
- (b) If x(t) is an odd time function such that x(t) = -x(-t), show that X(s) = -X(-s).
- (c) Determine which, if any, of the pole-zero plots in Figures P20.10-1 to P20.10-4 could correspond to an even time function. For those that could, indicate the required ROC.

(d) Determine which, if any, of the pole-zero plots in part (c) could correspond to an odd time function. For those that could, indicate the required ROC.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Signals and Systems Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.