19 Discrete-Time Sampling

Solutions to

Recommended Problems

S19.1

$x[n]$ is given by

$$
x[n]=(-1)^{n}=e^{j \pi n}
$$

Hence, the Fourier transform of $x[n]$ is

$$
X(\Omega)=\sum_{k=-\infty}^{\infty} \delta(\Omega-\pi-2 \pi k)
$$

Now $p[n]$ can be written as

$$
p[n]=\frac{1+(-1)^{n}}{2}
$$

Hence, its Fourier transform is given by

$$
P(\Omega)=\frac{1}{2} \sum_{k=-\infty}^{\infty} \delta(\Omega-2 \pi k)+\frac{1}{2} \sum_{k=-\infty}^{\infty} \delta(\Omega-\pi-2 \pi k)
$$

It is clear that $x_{p}[n]=p[n]$. Hence

$$
X_{p}(\Omega)=P(\Omega)
$$

S19.2
(a) $x_{s}[n]$ is $x[n]$ "stretched" by interspersing with zeros, as indicated in Figure S19.2-1.

Figure S19.2-1

$$
\begin{aligned}
X_{s}(\Omega) & =\sum_{n=-\infty}^{\infty} x_{s}[n] e^{-j \Omega n} \\
& =\sum_{n=-\infty}^{\infty} x_{s}[2 n] e^{-j \Omega 2 n}+\sum_{n=-\infty}^{\infty} x_{s}[2 n+1] e^{-j \Omega(2 n+1)} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j(2 \Omega) n}+0 \\
& =X(2 \Omega)
\end{aligned}
$$

(b) $x_{a}[n]=x[2 n]$,

$$
\begin{aligned}
X_{d}(\Omega) & =\sum_{n=-\infty}^{\infty} x_{d}[n] e^{-j \Omega n} \\
& =\sum_{n=-\infty}^{\infty} x[2 n] e^{-j \Omega n} \\
& =\frac{1}{2} \sum_{n=-\infty}^{\infty}\left(x[n]+(-1)^{n} x[n]\right) e^{-j \Omega n / 2} \\
& =\frac{1}{2} \sum_{n=-\infty}^{\infty} x[n] e^{-j(\Omega / 2) n}+\frac{1}{2} \sum_{n=-\infty}^{\infty} x[n] e^{-j((\Omega / 2)-\pi \mid n} \\
& =\frac{1}{2} X\left(\frac{\Omega}{2}\right)+\frac{1}{2} X\left(\frac{\Omega}{2}-\pi\right)
\end{aligned}
$$

(c) $X_{s}(\Omega)=X(2 \Omega)$

Figure S19.2-2

$$
X_{d}(\Omega)=\frac{1}{2} X\left(\frac{\Omega}{2}\right)+\frac{1}{2} X\left(\frac{\Omega}{2}-\pi\right)
$$

$\frac{1}{2} X(\Omega / 2)$ is indicated in Figure $\operatorname{S19.2-3}$. Therefore, $X_{d}(\Omega)$ is as shown in Figure S19.2-4.

Figure S19.2-3

Figure S19.2-4
(a) For $N=1, p[n]=1$. Hence

$$
P(\Omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\Omega-2 \pi k),
$$

as shown in Figure S19.3-1.

Figure S19.3-1
For $N=2$,

$$
p[n]=\sum_{k=-\infty}^{\infty} \delta[n-2 k]
$$

Hence

$$
P(\Omega)=\pi \sum_{k=-\infty}^{\infty} \delta(\Omega-\pi k),
$$

shown in Figure S19.3-2.

Figure S19.3-2
For $N=L$,

$$
p[n]=\sum_{k=-\infty}^{\infty} \delta[n-L k]
$$

Hence

$$
P(\Omega)=\frac{2 \pi}{L} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-\frac{2 \pi k}{L}\right)
$$

shown in Figure S19.3-3.

Figure S19.3-3
(b) $X_{p}(\Omega)$, the spectrum of $x_{p}[n]$, is proportional to the periodic convolution of $P(\Omega)$ and $X(\Omega)$. Consequently, with $P(\Omega)$ as indicated in Figure S19.3-3 and $X(\Omega)$ as indicated in Figure $\mathrm{S} 19.3-4, X_{p}(\Omega)$ is shown in Figure S19.3-5. In order that $x[n]$ be reconstructible from $x_{p}[n]$ using an ideal lowpass filter, aliasing must be avoided, which requires that

$$
\Omega_{M}<\frac{2 \pi}{N}-\Omega_{M}, \quad \text { or } \quad \Omega_{M}<\frac{\pi}{N}
$$

Figure S19.3-4

Figure S19.3-5
(i) $\quad \Omega_{M}=3 \pi / 10$. Therefore, to avoid aliasing,

$$
\frac{\pi}{N}>\frac{3 \pi}{10} \quad \text { or } \quad N<\frac{10}{3}
$$

Since N must be an integer, we require that $N \leq 3$. For $N=3$, the cutoff frequency of the lowpass filter must be greater than $3 \pi / 10$ and less than

$$
\frac{2 \pi}{3}-\frac{3 \pi}{10}=\left(\frac{11}{3}\right) \frac{\pi}{10}
$$

(ii) $\Omega_{M}=3 \pi / 5$. To avoid aliasing,

$$
\frac{\pi}{N}>\frac{3 \pi}{5} \quad \text { or } \quad N<\frac{5}{3}
$$

Since N must be a positive integer, this requires that $N=1$, i.e., $x[n]$ cannot be sampled.
(a) The sampling period T_{1} is 3 ms for the system in Figure P19.4-2 to be equivalent to the one in Figure P19.4-1.
(b) $X(\Omega)$ is sketched in Figure S19.4-1.

From the result of part (a), $Y(\Omega)$ is as shown in Figure S19.4-2.

S19.5
(a) Consider $x_{d_{1}}[n]$ and $x_{d_{2}}[n]$, and let

$$
x_{d_{3}}[n]=x_{d_{1}}[n]+\alpha x_{d_{2}}[n]
$$

Then

$$
x_{p_{3}}[n]= \begin{cases}x_{d_{1}}[n / N]+\alpha x_{d_{2}}[n / N], & n=0, \pm N, \ldots, \\ 0, & \text { otherwise }\end{cases}
$$

But

$$
x_{p_{1}}[n]= \begin{cases}x_{d_{1}}[n / N], & n=0, \pm N, \ldots, \\ 0, & \text { otherwise }\end{cases}
$$

And

$$
\alpha x_{p_{2}}[n]= \begin{cases}\alpha x_{d_{2}}[n / N], & n=0, \pm N, \ldots, \\ 0, & \text { otherwise }\end{cases}
$$

Hence,

$$
x_{p_{1}}[n]+\alpha x_{p_{2}}[n]= \begin{cases}x_{d_{1}}[n / N]+\alpha x_{d_{2}}[n / N], & n=0, \pm N, \ldots, \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
x_{p_{3}}[n]=x_{p_{1}}[n]+\alpha x_{p_{2}}[n]
$$

So system A is linear.
(b) Take $x_{d_{1}}[n]$ as shown in Figure S19.5-1, with $N=4$.

Figure S19.5-1
Then $x_{p_{1}}[n]$ is as shown in Figure S19.5-2.

Figure S19.5-2
Take $x_{d_{2}}[n]=x_{d_{1}}[n+1]$. Then $x_{p_{1}}[n]$ is as shown in Figure S19.5-3.

Figure S19.5-3
Hence, system A is not time-invariant.
(c) $x_{p}[n]= \begin{cases}x_{d}[n / N], & n=0, \pm N, \ldots, \\ 0, & \text { otherwise }\end{cases}$

Hence

$$
X_{p}(\Omega)=\sum_{n=-\infty}^{\infty} x_{d}[n] e^{-j \Omega(N n)}=X_{d}(N \Omega),
$$

as shown in Figure S19.5-4.

Figure S19.5-4
(d) $X(\Omega)$ is as shown in Figure S19.5-5 for exact bandlimited interpolation.

Figure S19.5-5

S19.6
(a) $x_{p}(t)$ is sketched in Figure S 19.6 -1, and $Y_{p}(\omega)$ is sketched in Figure S19.6-2.

Figure S19.6-1

Figure S19.6-2
(b) $X_{p}(\omega)$ is sketched in Figure S19.6-3, and $y_{p}(t)$ is sketched in Figure S19.6-4.

Figure S19.6-4
(c) Yes, $y_{p}(t)$ is periodic and this is reflected in $Y_{p}(\omega)$, which contains impulses.

Solutions to

Optional Problems
S19.7
(a) $x_{p}[n]= \begin{cases}x[n], & n=0, \pm 2, \pm 4, \ldots, \\ 0, & n= \pm 1, \pm 3, \pm 5, \ldots\end{cases}$

This is sketched in Figure S19.7-1.

Similarly, $x_{d}[n]=x[2 n]$, as shown in Figure S19.7-2.

Figure S19.7-2
(b) $X_{p}(\Omega)$ is obtained as follows:

$$
\begin{aligned}
x_{p}[n] & =\frac{1}{2} x[n]+\frac{1}{2}(-1)^{n} x[n] \\
X_{p}(\Omega) & =\frac{1}{2} X(\Omega)+\frac{1}{2} X(\Omega-\pi)
\end{aligned}
$$

and

$$
X_{d}(\Omega)=\frac{1}{2} X\left(\frac{\Omega}{2}\right)+\frac{1}{2} X\left(\frac{\Omega}{2}-\pi\right),
$$

which are shown in Figures S19.7-3 and S19.7-4. See Problem P19.2(b).

Figure S19.7-3

Figure S19.7-4
(a) We know that the Fourier transform of $p[n]$ is given by

$$
\frac{2 \pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-\frac{2 \pi k}{N}\right)
$$

Aliasing will be just avoided when the sampled spectra will look as shown in Figure S19.8-1.

Hence, we require that

$$
\frac{2 \pi}{N}>\frac{6 \pi}{11}, \quad \text { or } \quad N<\frac{22}{6} \Rightarrow N \leq 3
$$

Consequently, aliasing is avoided if $1 \leq N \leq 3 . X_{p}(\Omega)$ for $N=1,2$, and 3 are shown in Figure S19.8-2.

(b) An appropriate $H(\Omega)$ is shown in Figure S19.8-3.

Figure S19.8-3

S19.9
(a) $y[n]=\frac{x[3 n]+x[3 n+1]+x[3 n+2]}{3}$

$$
y[-4]=0
$$

$$
y[-3]=0
$$

$$
y[-2]=\frac{1}{3} x[-4]=\frac{1}{3}
$$

$$
y[-1]=\frac{x[-3]+x[-2]+x[-1]}{3}=\frac{2}{3}
$$

$$
y[0]=\frac{x[0]+x[1]+x[2]}{3}=\frac{4}{3}
$$

$$
y[1]=\frac{x[3]+x[4]+x[5]}{3}=\frac{1}{3}
$$

$$
y[2]=0
$$

$$
y[3]=0
$$

Hence, $y[n]$ can be sketched as in Figure S19.9.

Figure S19.9
(b) If

$$
z[n]=\frac{1}{3}[x[n]+x[n+1]+x[n+2]], \quad \text { for all } n
$$

and

$$
y[n]=z[3 n]
$$

we have expressed the processing as a combination of filtering and decimati
$\mathbf{S 1 9 . 1 0}$
If $h[0]=1$ and $h[n]=0$ for $n=k N, k \neq 0$, it is easy to see that the samples $x_{0}[n]$ that came from $x[n]$ will be unaffected. Hence,

$$
y[k N]=x[k], \quad \text { for all } k
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

