17 Interpolation

Solutions to Recommended Problems

S17.1

It is more convenient to solve this problem in the time domain than in the frequency domain. Since $x_{p}(t)=x(t) p(t)$ and $p(t)$ is an impulse train, $x_{p}(t)$ is a sampled version of $x(t)$, as shown in Figure S17.1-1.

$$
\begin{aligned}
x_{p}(t) & =x(t) \sum_{n=-\infty}^{\infty} \delta(t-n T) \\
& =\sum_{n=-\infty}^{\infty} x(n T) \delta(t-n T)
\end{aligned}
$$

Since $y(t)=x_{p}(t) * h(t)$ and $x_{p}(t)$ is impulsive, the convolution carried out in the time domain is as shown in Figure S17.1-2.

Here we have that $x(t)$ is sampled by a rectangular pulse train as opposed to an impulse train.

Since $h(t) *(1 / T) h(t)$, shown in Figure $\mathrm{S} 17.1-3$, is wider than the sampling period T, the resultant $w(t)$ is not a triangularly sampled version of $x(t) . w(t)$ consists of the superposition of waveforms shown in Figure S17.1-4.

We note that this superposition is actually a linear interpolation between the samples of $x(t)$. For example, Figure S17.1-5 convolved with Figure S17.1-6 equals Figure S17.1-7.

Figure S17.1-5

Figure S17.1-6

Figure S17.1-7

Now adding the shifted and scaled triangles yields Figure S17.1-8, which we see is the linear interpolation between samples of $x_{p}(t)$.

Figure S17.1-8

Now since $(1 / T) h(t) * h(t)$ is Figure S17.1-9, we expect that $w(t)$ is the linear interpolation of $x_{p}(t)$ shifted right by T, shown in Figure S17.1-10.

Figure S17.1-9

Figure S17.1-10
$y(t)$ in all cases is the superposition of two signals.
(a)

Figure S17.2-1
(b)

Figure S17.2-2
(c)

Figure S17.2-3

S17.3
(a)

Figure S17.3-1
We have

$$
\begin{aligned}
\frac{2 \pi}{T}-\omega_{m} & >\omega_{m} \\
\frac{2 \pi}{T} & >2 \omega_{m} \\
\omega_{s} & >2 \omega_{m}
\end{aligned}
$$

where ω_{s} is the sampling frequency. To ensure no aliasing we require that $T<\pi / \omega_{m}$.
(b) To recover $x(t)$ from $x_{p}(t)$, we must interpolate. We have previously shown that by lowpass filtering, the spectrum is recovered, assuming that sampling has been performed at a sufficiently high rate. The interpolation may be done in many different ways, however, depending on the cutoff frequency we choose for the lowpass filter. For example, any of the filters $H_{1}(\omega), H_{2}(\omega)$, and $H_{3}(\omega)$ in Figures S17.3-3 to S17.3-5 may be used to interpolate $x_{p}(t)$, whose Fourier transform is shown in Figure S17.3-2, to yield $x(t)$.

Figure S17.3-2

Figure S17.3-3

Figure S17.3-4

Figure S17.3-5
(c) If

$$
x_{p}(t)=\sum_{n=-\infty}^{\infty} x(n T) \delta(t-n T)
$$

and $H(\omega)$ is an ideal lowpass filter whose Fourier transform is shown in Figure S17.3-6, then

$$
h(t)=\frac{T \sin \omega_{c} t}{\pi t}=\frac{T \omega_{c}}{\pi} \operatorname{sinc} \frac{\omega_{c} t}{\pi}
$$

and

$$
x(t)=x_{p}(t) * h(t)=\frac{T \omega_{c}}{\pi} \sum_{n=-\infty}^{\infty} x(n T) \operatorname{sinc} \frac{(t-n T)}{\pi}
$$

Figure S17.3-6

S17.4

Figure S17.4
We want to choose $H(\omega)$ so that the cascade of the two filters is an ideal lowpass filter. In this example,

$$
G(\omega)=2 \sin \frac{\omega \Delta / 2}{\omega} e^{-j \omega \Delta / 2}
$$

so that

$$
\begin{aligned}
& H(\omega)=\frac{\omega}{2 \sin \omega \Delta / 2} e^{j \omega / / 2}, \quad|\omega|<\pi / \Delta, \\
& H(\omega)=0 \quad \text { otherwise }
\end{aligned}
$$

Figure S17.5

Solutions to Optional Problems

$\underline{S 17.6}$
(a) We want $h_{0}[n]$ such that $x_{p}[n] * h_{0}[n]=x_{0}[n]$. We sketch $h_{0}[n]$ in Figure S17.6-1.

Figure S17.6-1
(b) $x_{0}[n]=x_{p}[n] * h_{0}[n]$

If there is no aliasing, we can recover $x[n]$ from $x_{0}[n]$ by proper filtering. Since

$$
H_{0}(\Omega)=\frac{1-e^{-j \Omega N}}{1-e^{-j \Omega}}=e^{-j \Omega(N-1) / 2} \frac{\sin \Omega N / 2}{\sin \Omega / 2}
$$

we require

$$
\begin{aligned}
H(\Omega) & = \begin{cases}N / H_{0}(\Omega), & |\Omega| \leq \frac{\pi}{N}, \\
0, & \frac{\pi}{N}<|\Omega| \leq \pi\end{cases} \\
& = \begin{cases}N e^{j \Omega(N-1) / 2} \frac{\sin \Omega / 2}{\sin \Omega N / 2}, & |\Omega| \leq \frac{\pi}{N} \\
0, & \frac{\pi}{N}<|\Omega| \leq \pi\end{cases}
\end{aligned}
$$

(c) $h_{1}[n]=(1 / N)\left(h_{0}[n] * h_{0}[-n]\right)$, so $h_{1}[n]$ is a triangular discrete-time pulse, as shown in Figure S17.6-2.

Figure S17.6-2
(d) We require that

$$
H(\Omega)= \begin{cases}\frac{N}{H_{1}(\Omega)}, & \text { for }|\Omega| \leq \frac{\pi}{N} \\ 0, & \text { for } \frac{\pi}{N}<|\Omega|<\pi\end{cases}
$$

From part (c),

$$
H(\Omega)=N\left[\frac{N}{\left|H_{0}(\Omega)\right|^{2}}\right]= \begin{cases}N^{2}\left(\frac{\sin \Omega / 2}{\sin N \Omega / 2}\right)^{2}, & |\Omega| \leq \frac{\pi}{N} \\ 0, & \frac{\pi}{N}<|\Omega|<\pi\end{cases}
$$

(a) Taking Fourier transforms of both sides of the LCCDE yields

$$
\begin{aligned}
j \omega Y_{c}(\omega)+Y_{c}(\omega) & =1 \\
Y_{c}(\omega) & =\frac{1}{1+j \omega}
\end{aligned}
$$

so $y_{c}(t)=e^{-t} u(t)$. By examining the sampler followed by conversion to an impulse train, we note that

$$
y[n]=y_{c}(n T)=e^{-n T} u[n]
$$

(b) Since $y[n]=e^{-n T} u[n]$, we can take the Fourier transform to yield

$$
\begin{aligned}
Y(\Omega) & =\sum_{n=0}^{\infty} e^{-n T} e^{-j \Omega n} \\
& =\frac{1}{1-e^{-(T+j \Omega)}}
\end{aligned}
$$

In order for $w[n]=\delta[n]$, we require $W(\Omega)=1$ for all Ω. Thus,

$$
\begin{aligned}
Y(\Omega) H(\Omega) & =W(\Omega)=1 \\
H(\Omega) & =1-e^{-(T+j \Omega)}
\end{aligned}
$$

Now since $H(\Omega)=\Sigma_{n=-\infty}^{\infty} h[n] e^{-j \Omega n}$, we see by inspection that

$$
\begin{aligned}
& h[0]=1, \\
& h[1]=-e^{-T}, \\
& h[n]=0, \quad n \neq 0,1
\end{aligned}
$$

(a) Since $X_{p}(\omega)=X(\omega) P(\omega)$, we conclude that $X_{p}(\omega)$ is as shown in Figure S17.8-1.

Figure S17.8-1

$$
\begin{aligned}
X_{p}(\omega) & =X(\omega) \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{s}\right) \\
& =\sum_{n=-\infty}^{\infty} X\left(n \omega_{s}\right) \delta\left(\omega-n \omega_{s}\right)
\end{aligned}
$$

(b) From the convolution theorem,

$$
y(t)=x(t) * p(t)
$$

and

$$
p(t)=\frac{1}{\omega_{s}} \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{2 \pi n}{\omega_{s}}\right)
$$

The fact that

$$
\mathcal{F}\{p(t)\}=\sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{s}\right)
$$

can be easily verified. Therefore,

$$
y(t)=x(t) * \frac{1}{\omega_{s}} \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{2 \pi n}{\omega_{s}}\right)
$$

(c) We see from the sketch in Figure S17.8-2 that for no time-domain aliasing,

$$
T \leq \frac{2 \pi}{\omega_{s}}-T, \quad \text { so } \quad \omega_{s} \leq \frac{\pi}{T}
$$

Figure S17.8-2
(d) $x(t)$ may be recovered from $y(t)$, assuming that no time-domain aliasing has occurred, by low-time filtering $y(t)$ from $t=-T$ to T and applying a gain of ω_{s}.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

